José-Luis Jiménez-Ramírez, Ignacio Campos-Flores, J. Roa-Neri
{"title":"A New Perspective of the Force on a Magnetizable Rod inside a Solenoid","authors":"José-Luis Jiménez-Ramírez, Ignacio Campos-Flores, J. Roa-Neri","doi":"10.4236/JEMAA.2018.1010013","DOIUrl":null,"url":null,"abstract":"We analyze the familiar effect of the pulling of a magnetizable rod by a magnetic field inside a solenoid. We find that the analogy with the pulling of a dielectric slab by a charged capacitor is not as direct as usually thought. Indeed, there are two possibilities to pursue the analogy, according to the correspondence used, either E → B and D → H, or E → H and D → B. One of these results in an incorrect sign in the force, while the other gives the correct result. We avoid this ambiguity in the usual energy method applying a momentum balance equation derived from Maxwell’s equations. This method permits the calculation of the force with a volume integration of a force density, or with a surface integration of a stress tensor. An interpretation of our results establishes that the force acts at the interface and has its origin in Maxwell′s magnetic stresses at the medium-vacuum interface. This approach provides new insights and a new perspective of the origin of this force.","PeriodicalId":58231,"journal":{"name":"电磁分析与应用期刊(英文)","volume":"10 1","pages":"171-183"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电磁分析与应用期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/JEMAA.2018.1010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We analyze the familiar effect of the pulling of a magnetizable rod by a magnetic field inside a solenoid. We find that the analogy with the pulling of a dielectric slab by a charged capacitor is not as direct as usually thought. Indeed, there are two possibilities to pursue the analogy, according to the correspondence used, either E → B and D → H, or E → H and D → B. One of these results in an incorrect sign in the force, while the other gives the correct result. We avoid this ambiguity in the usual energy method applying a momentum balance equation derived from Maxwell’s equations. This method permits the calculation of the force with a volume integration of a force density, or with a surface integration of a stress tensor. An interpretation of our results establishes that the force acts at the interface and has its origin in Maxwell′s magnetic stresses at the medium-vacuum interface. This approach provides new insights and a new perspective of the origin of this force.