{"title":"Fracture Energy Measurement in Different Concrete Grades","authors":"C. L. Yip, H. Mohamad, H. Ahmad","doi":"10.30880/ijie.2023.15.02.014","DOIUrl":null,"url":null,"abstract":"Fracture energy is regarded as an intrinsic (material) properties that dominates crack mechanisms and associated crack growth in concrete damage under applied stress. In recent times, significant advancements in computing technology have driven the adoption of finite element analysis (FEA) methodologies that necessitate the integration of constitutive models, includingthe traction-separation relationship derived from cutting-edge fracture mechanics. A physically-based model requires fracture energy values; therefore, a properly measured fracture energy value is essential to exhibit better structure response within FEA models. There are large arrays of parameters involved during the concrete mixture, such as beam size effect, aggregate size, and concrete grade, that affect the flexural resistance of the concrete. The fracture and failure in concrete ahead of the crack tip are represented by fracture energy values where micro-damage events such as interfacial failure, fiber-bridging, and matrix cracking occurred.This study aims to determinethe fracture energy of concrete specimens with combination of notch depth aoat mid-span, design concrete strength as specified in the testing series. Independent compression strength, fcand measured load-displacement profiles underathree-point bendingtest were used to determine fracture energy by incorporating three available fracture energy expressions such as Bazant, Hillerborg,and CEB-FIP models.","PeriodicalId":14189,"journal":{"name":"International Journal of Integrated Engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30880/ijie.2023.15.02.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fracture energy is regarded as an intrinsic (material) properties that dominates crack mechanisms and associated crack growth in concrete damage under applied stress. In recent times, significant advancements in computing technology have driven the adoption of finite element analysis (FEA) methodologies that necessitate the integration of constitutive models, includingthe traction-separation relationship derived from cutting-edge fracture mechanics. A physically-based model requires fracture energy values; therefore, a properly measured fracture energy value is essential to exhibit better structure response within FEA models. There are large arrays of parameters involved during the concrete mixture, such as beam size effect, aggregate size, and concrete grade, that affect the flexural resistance of the concrete. The fracture and failure in concrete ahead of the crack tip are represented by fracture energy values where micro-damage events such as interfacial failure, fiber-bridging, and matrix cracking occurred.This study aims to determinethe fracture energy of concrete specimens with combination of notch depth aoat mid-span, design concrete strength as specified in the testing series. Independent compression strength, fcand measured load-displacement profiles underathree-point bendingtest were used to determine fracture energy by incorporating three available fracture energy expressions such as Bazant, Hillerborg,and CEB-FIP models.
期刊介绍:
The International Journal of Integrated Engineering (IJIE) is a single blind peer reviewed journal which publishes 3 times a year since 2009. The journal is dedicated to various issues focusing on 3 different fields which are:- Civil and Environmental Engineering. Original contributions for civil and environmental engineering related practices will be publishing under this category and as the nucleus of the journal contents. The journal publishes a wide range of research and application papers which describe laboratory and numerical investigations or report on full scale projects. Electrical and Electronic Engineering. It stands as a international medium for the publication of original papers concerned with the electrical and electronic engineering. The journal aims to present to the international community important results of work in this field, whether in the form of research, development, application or design. Mechanical, Materials and Manufacturing Engineering. It is a platform for the publication and dissemination of original work which contributes to the understanding of the main disciplines underpinning the mechanical, materials and manufacturing engineering. Original contributions giving insight into engineering practices related to mechanical, materials and manufacturing engineering form the core of the journal contents.