Modeling of optical wave propagation through turbulent atmosphere using fractional approach for FSO wireless communication

IF 1.1 Q3 PHYSICS, MULTIDISCIPLINARY Journal of Physics Communications Pub Date : 2023-01-10 DOI:10.1088/2399-6528/acb1ef
A. Khan, M. Zubair, U. Younis
{"title":"Modeling of optical wave propagation through turbulent atmosphere using fractional approach for FSO wireless communication","authors":"A. Khan, M. Zubair, U. Younis","doi":"10.1088/2399-6528/acb1ef","DOIUrl":null,"url":null,"abstract":"Free space optical (FSO) wireless communication has emerged as a viable alternative to the existing fiber optics and radio frequency (RF) communications due to its ability to operate in unlicensed spectrum, offering huge data handling capacities and being cost effective with easy deployment. The underlying communication mechanism in the FSO link is based upon the laser beam propagation model. The propagating free space optical beam undergoes signal degradation due to refraction and diffraction caused by atmospheric turbulence measured by refractive index structure parameter (C n 2). In this work, a novel, robust analytical model for propagating Gaussian-beam through atmospheric turbulence is presented, by solving the space-fractional paraxial wave equation. We report analytical expressions for the intensity and long-term beam spreading of a Gaussian beam in terms of space-fractional parameter D, for the range 2 < D ≤ 3. This range of parameter D, defines the effective number of euclidean space corresponding to atmospheric turbulence levels faced by the propagating Gaussian beam in the FSO link. The results of the proposed fractional model and the existing models agreed well, therefore the D-dimensional parameter can be used to effectively express the value of refractive index structure parameter (C n 2). The classical values of C n 2 ranges form 10−13 to 10−16 for strong to weak fluctuations respectively. However, in fractional-dimension scale, these fluctuations can be express as D = 2.668 (strong fluctuations) to D = 2.999 (weak fluctuations). The ideal case of free space beam propagation can be expressed as D = 3, with no turbulence. Moreover, we have studied the fractional-dimension model performance for varying wavelengths. Further, based upon a practical example, we proposed a self-sustainable FSO link architecture to efficiently minimize the effect of weak and strong fluctuations on the propagating optical beam, based upon the D-dimension fractional parameter, hence ensuring reliability of FSO link.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/acb1ef","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Free space optical (FSO) wireless communication has emerged as a viable alternative to the existing fiber optics and radio frequency (RF) communications due to its ability to operate in unlicensed spectrum, offering huge data handling capacities and being cost effective with easy deployment. The underlying communication mechanism in the FSO link is based upon the laser beam propagation model. The propagating free space optical beam undergoes signal degradation due to refraction and diffraction caused by atmospheric turbulence measured by refractive index structure parameter (C n 2). In this work, a novel, robust analytical model for propagating Gaussian-beam through atmospheric turbulence is presented, by solving the space-fractional paraxial wave equation. We report analytical expressions for the intensity and long-term beam spreading of a Gaussian beam in terms of space-fractional parameter D, for the range 2 < D ≤ 3. This range of parameter D, defines the effective number of euclidean space corresponding to atmospheric turbulence levels faced by the propagating Gaussian beam in the FSO link. The results of the proposed fractional model and the existing models agreed well, therefore the D-dimensional parameter can be used to effectively express the value of refractive index structure parameter (C n 2). The classical values of C n 2 ranges form 10−13 to 10−16 for strong to weak fluctuations respectively. However, in fractional-dimension scale, these fluctuations can be express as D = 2.668 (strong fluctuations) to D = 2.999 (weak fluctuations). The ideal case of free space beam propagation can be expressed as D = 3, with no turbulence. Moreover, we have studied the fractional-dimension model performance for varying wavelengths. Further, based upon a practical example, we proposed a self-sustainable FSO link architecture to efficiently minimize the effect of weak and strong fluctuations on the propagating optical beam, based upon the D-dimension fractional parameter, hence ensuring reliability of FSO link.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FSO无线通信中光波在湍流大气中传播的分形建模
自由空间光学(FSO)无线通信已成为现有光纤和射频(RF)通信的可行替代方案,因为它能够在未经许可的频谱中运行,提供巨大的数据处理能力,并且易于部署,具有成本效益。FSO链路中的底层通信机制基于激光束传播模型。传播的自由空间光束由于折射率结构参数(Cn2)测量的大气湍流引起的折射和衍射而经历信号退化。在这项工作中,通过求解空间分数傍轴波动方程,提出了一个新的、鲁棒的高斯光束在大气湍流中传播的分析模型。我们报道了在2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1