Oktoechos Classification in Liturgical Music Using SBU-LSTM/GRU

R. Rajan, Ananya Ayasi
{"title":"Oktoechos Classification in Liturgical Music Using SBU-LSTM/GRU","authors":"R. Rajan, Ananya Ayasi","doi":"10.21437/interspeech.2022-136","DOIUrl":null,"url":null,"abstract":"A distinguishing feature of the music repertoire of the Syrian tradition is the system of classifying melodies into eight tunes, called ’oktoe¯chos’. It inspired many traditions, such as Greek and Indian liturgical music. In oktoe¯chos tradition, liturgical hymns are sung in eight modes or eight colours (known as eight ’niram’, regionally). In this paper, the automatic oktoe¯chos genre classification is addressed using musical texture features (MTF), i-vectors and Mel-spectrograms through stacked bidirectional and unidirectional long-short term memory (SBU-LSTM) and GRU (SB-GRU) architectures. The performance of the proposed approaches is evaluated using a newly created corpus of liturgical music in Malayalam. SBU-LSTM and SB-GRU frameworks report average classification accuracy of 88.19% and 87.50%, with a significant margin over other frameworks. The experiments demonstrate the potential of stacked architectures in learning temporal information from MTF for the proposed task.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"2403-2407"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A distinguishing feature of the music repertoire of the Syrian tradition is the system of classifying melodies into eight tunes, called ’oktoe¯chos’. It inspired many traditions, such as Greek and Indian liturgical music. In oktoe¯chos tradition, liturgical hymns are sung in eight modes or eight colours (known as eight ’niram’, regionally). In this paper, the automatic oktoe¯chos genre classification is addressed using musical texture features (MTF), i-vectors and Mel-spectrograms through stacked bidirectional and unidirectional long-short term memory (SBU-LSTM) and GRU (SB-GRU) architectures. The performance of the proposed approaches is evaluated using a newly created corpus of liturgical music in Malayalam. SBU-LSTM and SB-GRU frameworks report average classification accuracy of 88.19% and 87.50%, with a significant margin over other frameworks. The experiments demonstrate the potential of stacked architectures in learning temporal information from MTF for the proposed task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运用SBU-LSTM/GRU对外科音乐中的Oktoechos分类
叙利亚传统音乐曲目的一个显著特点是将旋律分为八个曲调,称为“oktoe”chos。它激发了许多传统,如希腊和印度的礼拜音乐。在oktoe’chos的传统中,礼拜赞美诗以八种模式或八种颜色演唱(在地区上被称为八种“niram”)。在本文中,通过堆叠的双向和单向长短期记忆(SBU-LSTM)和GRU(SB-GRU)架构,使用音乐纹理特征(MTF)、i向量和梅尔谱图来解决oktoe’chos流派的自动分类问题。使用马拉雅拉姆语中新创建的礼拜音乐语料库来评估所提出的方法的性能。SBU-LSTM和SB-GRU框架报告的平均分类准确率分别为88.19%和87.50%,与其他框架相比有显著差异。实验证明了堆叠结构在从MTF学习所提出任务的时间信息方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1