High-throughput biointerfaces for direct, label-free, and multiplexed metaplasmonic biosensing

IF 3.6 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Research in Biotechnology Pub Date : 2023-01-01 DOI:10.1016/j.crbiot.2023.100119
María J. Ugarte-Orozco , Gerardo A. López-Muñoz , Aurora Antonio-Pérez , Karla M. Esquivel-Ortiz , Javier Ramón-Azcón
{"title":"High-throughput biointerfaces for direct, label-free, and multiplexed metaplasmonic biosensing","authors":"María J. Ugarte-Orozco ,&nbsp;Gerardo A. López-Muñoz ,&nbsp;Aurora Antonio-Pérez ,&nbsp;Karla M. Esquivel-Ortiz ,&nbsp;Javier Ramón-Azcón","doi":"10.1016/j.crbiot.2023.100119","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, metaplasmonic biosensors have emerged as a novel counterpart of well-established plasmonic biosensors based on thin metallic layers. Metaplasmonic biosensors offer high potential for sensor miniaturization, extreme sensitivity biosensing, and high multiplexing capabilities with detection methods free of coupling optical elements. These capabilities make metaplasmonic biosensors highly attractive for Point-of-Care and handled/portable devices or novel On-Chip devices; as a result, it has increased the number of prototypes and potential applications that emerged during the last years. One of the main challenges to achieving fully operative devices is the achievement of high-throughput biointerfaces for sensitive and selective biodetection in complex media. Despite the superior surface sensitivity achieved by metaplasmonic sensors compared to conventional plasmonic sensors based on metallic thin films, the main limitations to achieving high-throughput and multiplexed biosensing usually are associated with the sensitivity and selectivity of the biointerface and, as a consequence, their application to the direct analysis of real complex samples. This graphical review discusses the potential challenges and capabilities of different biofunctionalization strategies, biorecognition elements, and antifouling strategies to achieve scalable and high-throughput metaplasmonic biosensing for Point-of-Care devices and bioengineering applications like Organs-On-Chip.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262823000011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

In recent years, metaplasmonic biosensors have emerged as a novel counterpart of well-established plasmonic biosensors based on thin metallic layers. Metaplasmonic biosensors offer high potential for sensor miniaturization, extreme sensitivity biosensing, and high multiplexing capabilities with detection methods free of coupling optical elements. These capabilities make metaplasmonic biosensors highly attractive for Point-of-Care and handled/portable devices or novel On-Chip devices; as a result, it has increased the number of prototypes and potential applications that emerged during the last years. One of the main challenges to achieving fully operative devices is the achievement of high-throughput biointerfaces for sensitive and selective biodetection in complex media. Despite the superior surface sensitivity achieved by metaplasmonic sensors compared to conventional plasmonic sensors based on metallic thin films, the main limitations to achieving high-throughput and multiplexed biosensing usually are associated with the sensitivity and selectivity of the biointerface and, as a consequence, their application to the direct analysis of real complex samples. This graphical review discusses the potential challenges and capabilities of different biofunctionalization strategies, biorecognition elements, and antifouling strategies to achieve scalable and high-throughput metaplasmonic biosensing for Point-of-Care devices and bioengineering applications like Organs-On-Chip.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于直接,无标签和多路元等离子体生物传感的高通量生物接口
近年来,超等离子体生物传感器作为一种新型的基于薄金属层的等离子体生物传感器而出现。元等离子体生物传感器在传感器小型化、高灵敏度生物传感和高复用能力方面具有很高的潜力,检测方法不需要耦合光学元件。这些功能使得元等离子体生物传感器对医疗点和处理/便携式设备或新型片上设备极具吸引力;因此,它增加了过去几年出现的原型和潜在应用程序的数量。实现完全操作设备的主要挑战之一是实现高通量生物接口,用于复杂介质中的敏感和选择性生物检测。尽管与基于金属薄膜的传统等离子体传感器相比,超等离子体传感器具有优越的表面灵敏度,但实现高通量和多路生物传感的主要限制通常与生物界面的灵敏度和选择性有关,因此,它们在实际复杂样品的直接分析中的应用。这篇综述讨论了潜在的挑战和不同的生物功能化策略、生物识别元素和防污策略的能力,以实现可扩展和高通量的元等离子体生物传感,用于医疗现场设备和生物工程应用,如器官芯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Biotechnology
Current Research in Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.70
自引率
3.60%
发文量
50
审稿时长
38 days
期刊介绍: Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines. Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.
期刊最新文献
Engineering yeast lipids for production of designer biodiesel Table of Contents Dolastatins and their analogues present a compelling landscape of potential natural and synthetic anticancer drug candidates Drug Discovery, Diagnostic, and therapeutic trends on Mpox: A patent landscape Life cycle and environmental impact assessment of vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1