WideResNet with Joint Representation Learning and Data Augmentation for Cover Song Identification

Shichao Hu, Bin Zhang, Jinhong Lu, Yiliang Jiang, Wucheng Wang, Lingchen Kong, Weifeng Zhao, Tao Jiang
{"title":"WideResNet with Joint Representation Learning and Data Augmentation for Cover Song Identification","authors":"Shichao Hu, Bin Zhang, Jinhong Lu, Yiliang Jiang, Wucheng Wang, Lingchen Kong, Weifeng Zhao, Tao Jiang","doi":"10.21437/interspeech.2022-10600","DOIUrl":null,"url":null,"abstract":"Cover song identification (CSI) has been a challenging task and an import topic in music information retrieval (MIR) commu-nity. In recent years, CSI problems have been extensively stud-ied based on deep learning methods. In this paper, we propose a novel framework for CSI based on a joint representation learning method inspired by multi-task learning. In specific, we propose a joint learning strategy which combines classification and metric learning for optimizing the cover song model based on WideResNet, called LyraC-Net. Classification objective learns separable embeddings from different classes, while metric learning optimizes embedding similarity by decreasing the inter-class distance and increasing the intra-classs separabil-ity. This joint optimization strategy is expected to learn a more robust cover song representation than methods with single training objectives. For the metric learning, prototypical network is introduced to stabilize and accelerate the training process, to-gether with triplet loss. Furthermore, we introduce SpecAugment, a popular augmentation method in speech recognition, to further improve the performance. Experiment results show that our proposed method achieves promising results and outperforms other recent CSI methods in the evaluations.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"4187-4191"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-10600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Cover song identification (CSI) has been a challenging task and an import topic in music information retrieval (MIR) commu-nity. In recent years, CSI problems have been extensively stud-ied based on deep learning methods. In this paper, we propose a novel framework for CSI based on a joint representation learning method inspired by multi-task learning. In specific, we propose a joint learning strategy which combines classification and metric learning for optimizing the cover song model based on WideResNet, called LyraC-Net. Classification objective learns separable embeddings from different classes, while metric learning optimizes embedding similarity by decreasing the inter-class distance and increasing the intra-classs separabil-ity. This joint optimization strategy is expected to learn a more robust cover song representation than methods with single training objectives. For the metric learning, prototypical network is introduced to stabilize and accelerate the training process, to-gether with triplet loss. Furthermore, we introduce SpecAugment, a popular augmentation method in speech recognition, to further improve the performance. Experiment results show that our proposed method achieves promising results and outperforms other recent CSI methods in the evaluations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于联合表示学习和数据增强的WideResNet翻唱歌曲识别
翻唱歌曲识别(CSI)一直是音乐信息检索(MIR)领域的一项具有挑战性的任务和重要课题。近年来,基于深度学习方法的CSI问题得到了广泛的研究。在本文中,我们提出了一种新的CSI框架,该框架基于受多任务学习启发的联合表示学习方法。具体而言,我们提出了一种结合分类和度量学习的联合学习策略,用于优化基于WideResNet的翻唱歌曲模型,称为LyraC-Net。分类目标学习来自不同类的可分离嵌入,而度量学习通过减少类间距离和增加类内分离性来优化嵌入相似性。与具有单一训练目标的方法相比,这种联合优化策略有望学习到更稳健的翻唱歌曲表示。对于度量学习,引入原型网络来稳定和加速训练过程,同时避免三元组损失。此外,我们引入了SpecAugment,一种在语音识别中流行的增强方法,以进一步提高性能。实验结果表明,我们提出的方法取得了很好的结果,并且在评估中优于其他最近的CSI方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1