Tamunopriye Ene Dagogo-George, H. A. Mojeed, A. Balogun, M. Mabayoje, S. A. Salihu
{"title":"Tree-based homogeneous ensemble model with feature selection for diabetic retinopathy prediction","authors":"Tamunopriye Ene Dagogo-George, H. A. Mojeed, A. Balogun, M. Mabayoje, S. A. Salihu","doi":"10.14710/jtsiskom.2020.13669","DOIUrl":null,"url":null,"abstract":"Diabetic Retinopathy (DR) is a condition that emerges from prolonged diabetes, causing severe damages to the eyes. Early diagnosis of this disease is highly imperative as late diagnosis may be fatal. Existing studies employed machine learning approaches with Support Vector Machines (SVM) having the highest performance on most analyses and Decision Trees (DT) having the lowest. However, SVM has been known to suffer from parameter and kernel selection problems, which undermine its predictive capability. Hence, this study presents homogenous ensemble classification methods with DT as the base classifier to optimize predictive performance. Boosting and Bagging ensemble methods with feature selection were employed, and experiments were carried out using Python Scikit Learn libraries on DR datasets extracted from UCI Machine Learning repository. Experimental results showed that Bagged and Boosted DT were better than SVM. Specifically, Bagged DT performed best with accuracy 65.38 %, f-score 0.664, and AUC 0.731, followed by Boosted DT with accuracy 65.42 %, f-score 0.655, and AUC 0.724 when compared to SVM (accuracy 65.16 %, f-score 0.652, and AUC 0.721). These results indicate that DT's predictive performance can be optimized by employing the homogeneous ensemble methods to outperform SVM in predicting DR.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"8 1","pages":"297-303"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.2020.13669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Diabetic Retinopathy (DR) is a condition that emerges from prolonged diabetes, causing severe damages to the eyes. Early diagnosis of this disease is highly imperative as late diagnosis may be fatal. Existing studies employed machine learning approaches with Support Vector Machines (SVM) having the highest performance on most analyses and Decision Trees (DT) having the lowest. However, SVM has been known to suffer from parameter and kernel selection problems, which undermine its predictive capability. Hence, this study presents homogenous ensemble classification methods with DT as the base classifier to optimize predictive performance. Boosting and Bagging ensemble methods with feature selection were employed, and experiments were carried out using Python Scikit Learn libraries on DR datasets extracted from UCI Machine Learning repository. Experimental results showed that Bagged and Boosted DT were better than SVM. Specifically, Bagged DT performed best with accuracy 65.38 %, f-score 0.664, and AUC 0.731, followed by Boosted DT with accuracy 65.42 %, f-score 0.655, and AUC 0.724 when compared to SVM (accuracy 65.16 %, f-score 0.652, and AUC 0.721). These results indicate that DT's predictive performance can be optimized by employing the homogeneous ensemble methods to outperform SVM in predicting DR.