{"title":"Motion in Stratified Fluids","authors":"R. More, A. Ardekani","doi":"10.1146/annurev-fluid-120720-011132","DOIUrl":null,"url":null,"abstract":"Density stratification due to temperature or salinity variations greatly influences the flow around and the sedimentation of objects such as particles, drops, bubbles, and small organisms in the atmosphere, oceans, and lakes. Density stratification hampers the vertical flow and substantially affects the sedimentation of an isolated object, the hydrodynamic interactions between a pair of objects, and the collective behavior of suspensions in various ways, depending on the relative magnitude of stratification, inertia (advection), and viscous (diffusion) effects. This review discusses these effects and their hydrodynamic mechanisms in some commonly observed fluid–particle transport phenomena in oceans and the atmosphere. Physical understanding of these mechanisms can help us better model these phenomena and, hence, predict their geophysical, engineering, ecological, and environmental implications. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":50754,"journal":{"name":"Annual Review of Fluid Mechanics","volume":null,"pages":null},"PeriodicalIF":25.4000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-fluid-120720-011132","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4
Abstract
Density stratification due to temperature or salinity variations greatly influences the flow around and the sedimentation of objects such as particles, drops, bubbles, and small organisms in the atmosphere, oceans, and lakes. Density stratification hampers the vertical flow and substantially affects the sedimentation of an isolated object, the hydrodynamic interactions between a pair of objects, and the collective behavior of suspensions in various ways, depending on the relative magnitude of stratification, inertia (advection), and viscous (diffusion) effects. This review discusses these effects and their hydrodynamic mechanisms in some commonly observed fluid–particle transport phenomena in oceans and the atmosphere. Physical understanding of these mechanisms can help us better model these phenomena and, hence, predict their geophysical, engineering, ecological, and environmental implications. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 55 is January 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Fluid Mechanics is a longstanding publication dating back to 1969 that explores noteworthy advancements in the field of fluid mechanics. Its comprehensive coverage includes various topics such as the historical and foundational aspects of fluid mechanics, non-newtonian fluids and rheology, both incompressible and compressible fluids, plasma flow, flow stability, multi-phase flows, heat and species transport, fluid flow control, combustion, turbulence, shock waves, and explosions.
Recently, an important development has occurred for this journal. It has transitioned from a gated access model to an open access platform through Annual Reviews' innovative Subscribe to Open program. Consequently, all articles published in the current volume are now freely accessible to the public under a Creative Commons Attribution (CC BY) license.
This new approach not only ensures broader dissemination of research in fluid mechanics but also fosters a more inclusive and collaborative scientific community.