Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption

Sahil Chauhan, Tajamul Shafi, Brajesh Kumar Dubey, Shamik Chowdhury
{"title":"Biochar-mediated removal of pharmaceutical compounds from aqueous matrices via adsorption","authors":"Sahil Chauhan,&nbsp;Tajamul Shafi,&nbsp;Brajesh Kumar Dubey,&nbsp;Shamik Chowdhury","doi":"10.1007/s42768-022-00118-y","DOIUrl":null,"url":null,"abstract":"<div><p>Pharmaceutical is one of the noteworthy classes of emerging contaminants. These biologically active compounds pose a range of deleterious impacts on human health and the environment. This is attributed to their refractory behavior, poor biodegradability, and pseudopersistent nature. Their large-scale production by pharmaceutical industries and subsequent widespread utilization in hospitals, community health centers, and veterinary facilities, among others, have significantly increased the occurrence of pharmaceutical residues in various environmental compartments. Several technologies are currently being evaluated to eliminate pharmaceutical compounds (PCs) from aqueous environments. Among them, adsorption appears as the most viable treatment option because of its operational simplicity and low cost. Intensive research and development efforts are, therefore, currently underway to develop inexpensive adsorbents for the effective abatement of PCs. Although numerous adsorbents have been investigated for the removal of PCs in recent years, biochar-based adsorbents have garnered tremendous scientific attention to eliminate PCs from aqueous matrices because of their decent specific surface area, tunable surface chemistry, scalable production, and environmentally benign nature. This review, therefore, attempts to provide an overview of the latest progress in the application of biochar for the removal of PCs from wastewater. Additionally, the fundamental knowledge gaps in the domain knowledge are identified and novel strategic research guidelines are laid out to make further advances in this promising approach towards sustainable development.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42768-022-00118-y.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-022-00118-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Pharmaceutical is one of the noteworthy classes of emerging contaminants. These biologically active compounds pose a range of deleterious impacts on human health and the environment. This is attributed to their refractory behavior, poor biodegradability, and pseudopersistent nature. Their large-scale production by pharmaceutical industries and subsequent widespread utilization in hospitals, community health centers, and veterinary facilities, among others, have significantly increased the occurrence of pharmaceutical residues in various environmental compartments. Several technologies are currently being evaluated to eliminate pharmaceutical compounds (PCs) from aqueous environments. Among them, adsorption appears as the most viable treatment option because of its operational simplicity and low cost. Intensive research and development efforts are, therefore, currently underway to develop inexpensive adsorbents for the effective abatement of PCs. Although numerous adsorbents have been investigated for the removal of PCs in recent years, biochar-based adsorbents have garnered tremendous scientific attention to eliminate PCs from aqueous matrices because of their decent specific surface area, tunable surface chemistry, scalable production, and environmentally benign nature. This review, therefore, attempts to provide an overview of the latest progress in the application of biochar for the removal of PCs from wastewater. Additionally, the fundamental knowledge gaps in the domain knowledge are identified and novel strategic research guidelines are laid out to make further advances in this promising approach towards sustainable development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物炭介导的通过吸附从水基质中去除药物化合物
药物污染是一类值得注意的新兴污染物。这些生物活性化合物对人类健康和环境造成一系列有害影响。这是由于它们的耐火性能,较差的生物降解性和伪持久性。制药工业的大规模生产以及随后在医院、社区卫生中心和兽医设施等的广泛使用,大大增加了各种环境隔间中药物残留的发生率。目前正在评估几种技术,以消除水环境中的药物化合物(PCs)。其中,吸附法因其操作简单、成本低而成为最可行的处理方法。因此,目前正在进行密集的研究和开发工作,以开发廉价的吸附剂,以有效地减少pc。尽管近年来已经研究了许多吸附剂用于去除pc,但生物炭基吸附剂由于其良好的比表面积、可调节的表面化学、可扩展的生产和环境友好的性质,已经获得了巨大的科学关注,以从水性基质中去除pc。本文就生物炭在废水中脱除pc的最新研究进展作一综述。此外,确定了领域知识的基本知识差距,并制定了新的战略研究指导方针,以进一步推进这一有前途的可持续发展方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing methane production in anaerobic co-digestion of food wastes and sewage sludge: roles of different types of iron amendments A two-stage strategy combining vermicomposting and membrane-covered aerobic composting to achieve value-added recycling of kitchen waste solid residues Slum dynamics: the interplay of remittances, waste disposal and health outcomes A review on graphite carbon nitride (g-C3N4)-based composite for antibiotics and dye degradation and hydrogen production Functionalizing carbon nanofibers with chicken manure to catalyse oxygen reduction reaction in a fuel cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1