Analisis Sentimen Tweet Tentang UU Cipta Kerja Menggunakan Algoritma SVM Berbasis PSO

Trifebi Shina Sabrila, Yufis Azhar, C. Aditya
{"title":"Analisis Sentimen Tweet Tentang UU Cipta Kerja Menggunakan Algoritma SVM Berbasis PSO","authors":"Trifebi Shina Sabrila, Yufis Azhar, C. Aditya","doi":"10.14421/jiska.2022.7.1.10-19","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) is one of the most widely used classification algorithms for sentiment analysis and has been shown to provide satisfactory performance. However, despite its advantages, the SVM algorithm still has weaknesses in selecting the right SVM parameters to optimize the performance. In this study, sentiment analysis was done with the use of data called tweets about Undang-Undang Cipta Kerja which reap many pros and cons by the people in Indonesia, especially the laborers. The classification method used in this study is the Support Vector Machine algorithm which is optimized using the Particle Swarm Optimization method for the SVM parameters selection in the hope of optimizing the performance generated by the SVM algorithm in sentiment analysis. The results of the study using 10 k-fold cross-validations using the SVM algorithm resulted in an accuracy of 92,99%, a precision of 93,24%, and a recall of 93%. Meanwhile, the SVM and PSO algorithms produce an accuracy of 95%, precision of 95,08%, and recall of 94,97%. The results show that the Particle Swarm Optimization method can overcome the weaknesses of the Support Vector Machine algorithm in the problem of parameter selection and has succeeded in improving the resulting performance where the SVM-PSO is more superior to SVM without optimization in sentiment analysis.","PeriodicalId":34216,"journal":{"name":"JISKA Jurnal Informatika Sunan Kalijaga","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JISKA Jurnal Informatika Sunan Kalijaga","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/jiska.2022.7.1.10-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Support Vector Machine (SVM) is one of the most widely used classification algorithms for sentiment analysis and has been shown to provide satisfactory performance. However, despite its advantages, the SVM algorithm still has weaknesses in selecting the right SVM parameters to optimize the performance. In this study, sentiment analysis was done with the use of data called tweets about Undang-Undang Cipta Kerja which reap many pros and cons by the people in Indonesia, especially the laborers. The classification method used in this study is the Support Vector Machine algorithm which is optimized using the Particle Swarm Optimization method for the SVM parameters selection in the hope of optimizing the performance generated by the SVM algorithm in sentiment analysis. The results of the study using 10 k-fold cross-validations using the SVM algorithm resulted in an accuracy of 92,99%, a precision of 93,24%, and a recall of 93%. Meanwhile, the SVM and PSO algorithms produce an accuracy of 95%, precision of 95,08%, and recall of 94,97%. The results show that the Particle Swarm Optimization method can overcome the weaknesses of the Support Vector Machine algorithm in the problem of parameter selection and has succeeded in improving the resulting performance where the SVM-PSO is more superior to SVM without optimization in sentiment analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群算法的支持向量机在求职UU情绪推文分析中的应用
支持向量机(SVM)是情感分析中应用最广泛的分类算法之一,并已被证明具有令人满意的性能。然而,尽管支持向量机算法有其优点,但在选择合适的支持向量机参数以优化性能方面仍存在不足。在这项研究中,情绪分析是通过使用有关Undang-Undang Cipta Kerja的推文数据进行的,这些数据在印度尼西亚的人们,特别是劳动者那里获得了许多优点和缺点。本研究使用的分类方法是支持向量机算法,该算法采用粒子群优化方法对支持向量机的参数选择进行优化,以期优化支持向量机算法在情感分析中的性能。使用支持向量机算法进行10 k倍交叉验证的研究结果显示,准确率为92,99%,精密度为93,24%,召回率为93%。同时,SVM和PSO算法的准确率为95%,精密度为95.08%,召回率为94.97%。结果表明,粒子群优化方法克服了支持向量机算法在参数选择问题上的不足,在情感分析中,SVM- pso优于未经优化的SVM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
21
审稿时长
12 weeks
期刊最新文献
Pemodelan Proses Bisnis Kuliah Online MOOCs menggunakan BPMN (Studi Kasus alison.com) Analisis Bibliometrik Publikasi Isu Kebocoran Data Menggunakan VOSviewer Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes Klasifikasi Tingkat Kerusakan Sektor Pasca Bencana Alam Menggunakan Metode MULTIMOORA Berbasis Web Pembuatan Ergonomic Mechanical Keyboard untuk Mengurangi Cidera Tangan Menggunakan Teknologi Arduino
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1