Machine learning meets visualization – Experiences and lessons learned

IF 1 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS IT-Information Technology Pub Date : 2022-08-01 DOI:10.1515/itit-2022-0034
Quynh Quang Ngo, Frederik L. Dennig, D. Keim, M. Sedlmair
{"title":"Machine learning meets visualization – Experiences and lessons learned","authors":"Quynh Quang Ngo, Frederik L. Dennig, D. Keim, M. Sedlmair","doi":"10.1515/itit-2022-0034","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we discuss how Visualization (VIS) with Machine Learning (ML) could mutually benefit from each other. We do so through the lens of our own experience working at this intersection for the last decade. Particularly we focus on describing how VIS supports explaining ML models and aids ML-based Dimensionality Reduction techniques in solving tasks such as parameter space analysis. In the other direction, we discuss approaches showing how ML helps improve VIS, such as applying ML-based automation to improve visualization design. Based on the examples and our own perspective, we describe a number of open research challenges that we frequently encountered in our endeavors to combine ML and VIS.","PeriodicalId":43953,"journal":{"name":"IT-Information Technology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IT-Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/itit-2022-0034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, we discuss how Visualization (VIS) with Machine Learning (ML) could mutually benefit from each other. We do so through the lens of our own experience working at this intersection for the last decade. Particularly we focus on describing how VIS supports explaining ML models and aids ML-based Dimensionality Reduction techniques in solving tasks such as parameter space analysis. In the other direction, we discuss approaches showing how ML helps improve VIS, such as applying ML-based automation to improve visualization design. Based on the examples and our own perspective, we describe a number of open research challenges that we frequently encountered in our endeavors to combine ML and VIS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习与可视化——经验教训
在本文中,我们讨论了可视化(VIS)与机器学习(ML)如何相互受益。我们通过自己过去十年在这个十字路口工作的经验来做到这一点。我们特别关注描述VIS如何支持解释ML模型,并帮助基于ML的降维技术解决诸如参数空间分析等任务。在另一个方向上,我们讨论了显示ML如何帮助改进VIS的方法,例如应用基于ML的自动化来改进可视化设计。基于这些例子和我们自己的观点,我们描述了我们在努力结合ML和VIS时经常遇到的一些开放的研究挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IT-Information Technology
IT-Information Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.80
自引率
0.00%
发文量
29
期刊最新文献
Wildfire prediction for California using and comparing Spatio-Temporal Knowledge Graphs Machine learning in AI Factories – five theses for developing, managing and maintaining data-driven artificial intelligence at large scale Machine learning applications Machine learning in sensor identification for industrial systems Machine learning and cyber security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1