Aeroelastic stability analysis of rotor blade with complex three-dimensional design

Q3 Engineering 西北工业大学学报 Pub Date : 2023-02-01 DOI:10.1051/jnwpu/20234110209
Jinghui Deng, Zhi-Peng Yu, Yun-Feng Zhou, Bin Song
{"title":"Aeroelastic stability analysis of rotor blade with complex three-dimensional design","authors":"Jinghui Deng, Zhi-Peng Yu, Yun-Feng Zhou, Bin Song","doi":"10.1051/jnwpu/20234110209","DOIUrl":null,"url":null,"abstract":"A rotor dynamic analysis method for the complex three-dimensional design blade was developed and applied to analyzing its aeroelastic stability. Based on the medium-size deformation beam theory and Hamilton principle, the joint transfer matrix was used in the blade kinematic and the deformation compatibility principle was used in the assembled finite element matrix to develop the complex three-dimensional rotor structural dynamics model. The BO105 rotor was used to validate this method and the aeroelastic characteristic of the complex three-dimensional rotor was analyzed in detail. The results showed that the negative structural coupling of flap-torsion was appeared with tip sweep, and the 1/rev torsion modal frequency was decreased, and the 1/rev torsion modal damping ratio was maximally decreased about 90%. The positive structural coupling of lag-torsion was appeared with tip droop, the 2/rev lag modal frequency was decreased, the 1/rev torsion modal damping ratio was maximally decreased about 62%. The torsion stability was sharply decreased with tip sweep and droop design.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20234110209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A rotor dynamic analysis method for the complex three-dimensional design blade was developed and applied to analyzing its aeroelastic stability. Based on the medium-size deformation beam theory and Hamilton principle, the joint transfer matrix was used in the blade kinematic and the deformation compatibility principle was used in the assembled finite element matrix to develop the complex three-dimensional rotor structural dynamics model. The BO105 rotor was used to validate this method and the aeroelastic characteristic of the complex three-dimensional rotor was analyzed in detail. The results showed that the negative structural coupling of flap-torsion was appeared with tip sweep, and the 1/rev torsion modal frequency was decreased, and the 1/rev torsion modal damping ratio was maximally decreased about 90%. The positive structural coupling of lag-torsion was appeared with tip droop, the 2/rev lag modal frequency was decreased, the 1/rev torsion modal damping ratio was maximally decreased about 62%. The torsion stability was sharply decreased with tip sweep and droop design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂三维设计动叶气动弹性稳定性分析
提出了一种复杂三维设计叶片的转子动力学分析方法,并将其应用于气动弹性稳定性分析。基于中型变形梁理论和Hamilton原理,在叶片运动学中使用了关节传递矩阵,在装配有限元矩阵中使用了变形协调原理,建立了复杂的三维转子结构动力学模型。利用BO105转子对该方法进行了验证,并对复杂三维转子的气动弹性特性进行了详细分析。结果表明,翼尖后掠时,襟翼扭转出现负结构耦合,1/rev扭转模态频率降低,1/rev扭转模态阻尼比最大降低约90%。叶尖下垂表现出滞后扭转的正结构耦合,2转滞后模态频率降低,1转扭转模态阻尼比最大降低约62%。叶尖扫掠和下垂设计使扭转稳定性急剧下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
西北工业大学学报
西北工业大学学报 Engineering-Engineering (all)
CiteScore
1.30
自引率
0.00%
发文量
6201
审稿时长
12 weeks
期刊介绍:
期刊最新文献
Research on the safe separation corridor of the combined aircraft and its generation method Cracking mechanism analysis and experimental verification of encapsulated module under high low temperature cycle considering residual stress AFDX network equipment fault diagnosis technology MUSIC algorithm based on eigenvalue clustering Target recognition algorithm based on HRRP time-spectrogram feature and multi-scale asymmetric convolutional neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1