Minimal σ-field for flexible sufficient dimension reduction

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Electronic Journal of Statistics Pub Date : 2022-01-01 DOI:10.1214/22-ejs1999
Hanmin Guo, Lin Hou, Y. Zhu
{"title":"Minimal σ-field for flexible sufficient dimension reduction","authors":"Hanmin Guo, Lin Hou, Y. Zhu","doi":"10.1214/22-ejs1999","DOIUrl":null,"url":null,"abstract":"Sufficient Dimension Reduction (SDR) becomes an important tool for mitigating the curse of dimensionality in high dimensional regression analysis. Recently, Flexible SDR (FSDR) has been proposed to extend SDR by finding lower dimensional projections of transformed explanatory variables. The dimensions of the projections however cannot fully represent the extent of data reduction FSDR can achieve. As a consequence, optimality and other theoretical properties of FSDR are currently not well understood. In this article, we propose to use the σ-field associated with the projections, together with their dimensions to fully characterize FSDR, and refer to the σ-field as the FSDR σ-field. We further introduce the concept of minimal FSDR σ-field and consider FSDR projections with the minimal σfield optimal. Under some mild conditions, we show that the minimal FSDR σ-field exists, attaining the lowest dimensionality at the same time. To estimate the minimal FSDR σ-field, we propose a two-stage procedure called the Generalized Kernel Dimension Reduction (GKDR) method and partially establish its consistency property under weak conditions. Extensive simulation experiments demonstrate that the GKDRmethod can effectively find the minimal FSDR σ-field and outperform other existing methods. The application of GKDR to a real life air pollution data set sheds new light on the connections between atmospheric conditions and air quality. MSC2020 subject classifications: Primary 62B05; secondary 62J02.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejs1999","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Sufficient Dimension Reduction (SDR) becomes an important tool for mitigating the curse of dimensionality in high dimensional regression analysis. Recently, Flexible SDR (FSDR) has been proposed to extend SDR by finding lower dimensional projections of transformed explanatory variables. The dimensions of the projections however cannot fully represent the extent of data reduction FSDR can achieve. As a consequence, optimality and other theoretical properties of FSDR are currently not well understood. In this article, we propose to use the σ-field associated with the projections, together with their dimensions to fully characterize FSDR, and refer to the σ-field as the FSDR σ-field. We further introduce the concept of minimal FSDR σ-field and consider FSDR projections with the minimal σfield optimal. Under some mild conditions, we show that the minimal FSDR σ-field exists, attaining the lowest dimensionality at the same time. To estimate the minimal FSDR σ-field, we propose a two-stage procedure called the Generalized Kernel Dimension Reduction (GKDR) method and partially establish its consistency property under weak conditions. Extensive simulation experiments demonstrate that the GKDRmethod can effectively find the minimal FSDR σ-field and outperform other existing methods. The application of GKDR to a real life air pollution data set sheds new light on the connections between atmospheric conditions and air quality. MSC2020 subject classifications: Primary 62B05; secondary 62J02.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小的σ-域为灵活的充分降维
充分降维(SDR)成为缓解高维回归分析中维数诅咒的重要工具。最近,柔性SDR(FSDR)被提出通过寻找转换的解释变量的低维投影来扩展SDR。然而,预测的维度不能完全代表FSDR可以实现的数据缩减程度。因此,FSDR的最优性和其他理论性质目前还没有得到很好的理解。在本文中,我们建议使用与投影相关的σ-场及其维度来完全表征FSDR,并将σ-场称为FSDRσ-场。我们进一步引入了最小FSDRσ场的概念,并考虑了具有最小σ场最优的FSDR投影。在一些温和的条件下,我们证明了最小FSDRσ-场的存在,同时达到了最低维。为了估计最小FSDRσ-场,我们提出了一种称为广义核降维(GKDR)方法的两阶段过程,并在弱条件下部分建立了它的一致性性质。大量的仿真实验表明,GKDR方法能够有效地找到最小FSDRσ场,并且优于现有的其他方法。GKDR在现实生活中的空气污染数据集中的应用为大气条件和空气质量之间的联系提供了新的线索。MSC2020受试者分类:初级62B05;次级62J02。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
期刊最新文献
Direct Bayesian linear regression for distribution-valued covariates. Statistical inference via conditional Bayesian posteriors in high-dimensional linear regression Subnetwork estimation for spatial autoregressive models in large-scale networks Tests for high-dimensional single-index models Variable selection for single-index varying-coefficients models with applications to synergistic G × E interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1