A Novel Digital Predistortion Identification Algorithm Based on Variable Forgetting Factor Recursive Least Square Method

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of RF and Microwave Computer-Aided Engineering Pub Date : 2023-05-20 DOI:10.1155/2023/6377941
Wenxian Song, Guofu Wang, Jincai Ye
{"title":"A Novel Digital Predistortion Identification Algorithm Based on Variable Forgetting Factor Recursive Least Square Method","authors":"Wenxian Song, Guofu Wang, Jincai Ye","doi":"10.1155/2023/6377941","DOIUrl":null,"url":null,"abstract":"The transmitting signal of wireless communication system is impaired by the nonlinearity of RF power amplifier (PA) which leads to signal distortion and spectrum spillover, by which the signal transmission quality is affected. Digital predistortion (DPD) is an efficient and economical way to correct the nonlinear effects of power amplifiers. The recursive least square (RLS) recognition algorithm is commonly used to extract the correction coefficients of the DPD model, and the accuracy of the extraction directly affects the system performance. In this paper, a new variable forgetting factor identification algorithm (new variable forgetting factor recursive least square, NVFFRLS) is proposed for recursive least square (RLS) identification algorithm. The 64-QAM signal is combined with a memory polynomial (MP) predistortion model for predistortion system simulation. The experimental results show that, compared with the RLS identification algorithm and two kinds of variable forgetting factor RLS identification algorithms, the algorithm has smaller estimation error, faster convergence, and better tracking capability, stability, and adaptability; the predistortion system based on NVFFRLS identification algorithm can compensate the nonlinear memory effects of power amplifier more effectively.","PeriodicalId":54944,"journal":{"name":"International Journal of RF and Microwave Computer-Aided Engineering","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF and Microwave Computer-Aided Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/6377941","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The transmitting signal of wireless communication system is impaired by the nonlinearity of RF power amplifier (PA) which leads to signal distortion and spectrum spillover, by which the signal transmission quality is affected. Digital predistortion (DPD) is an efficient and economical way to correct the nonlinear effects of power amplifiers. The recursive least square (RLS) recognition algorithm is commonly used to extract the correction coefficients of the DPD model, and the accuracy of the extraction directly affects the system performance. In this paper, a new variable forgetting factor identification algorithm (new variable forgetting factor recursive least square, NVFFRLS) is proposed for recursive least square (RLS) identification algorithm. The 64-QAM signal is combined with a memory polynomial (MP) predistortion model for predistortion system simulation. The experimental results show that, compared with the RLS identification algorithm and two kinds of variable forgetting factor RLS identification algorithms, the algorithm has smaller estimation error, faster convergence, and better tracking capability, stability, and adaptability; the predistortion system based on NVFFRLS identification algorithm can compensate the nonlinear memory effects of power amplifier more effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的基于可变遗忘因子递推最小二乘法的数字预失真识别算法
无线通信系统中射频功率放大器(PA)的非线性会导致信号失真和频谱溢出,从而影响信号的传输质量。数字预失真(DPD)是校正功放非线性效应的一种经济有效的方法。DPD模型修正系数的提取通常采用递推最小二乘(RLS)识别算法,提取的准确性直接影响系统的性能。本文针对递归最小二乘(RLS)识别算法,提出了一种新的变量遗忘因子识别算法(新变量遗忘因子递归最小二乘,NVFFRLS)。将64-QAM信号与记忆多项式(MP)预失真模型相结合,进行预失真系统仿真。实验结果表明,与RLS辨识算法和两种变遗忘因子RLS辨识算法相比,该算法估计误差更小,收敛速度更快,具有更好的跟踪能力、稳定性和自适应性;基于NVFFRLS识别算法的预失真系统可以更有效地补偿功放的非线性记忆效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
23.50%
发文量
489
审稿时长
3 months
期刊介绍: International Journal of RF and Microwave Computer-Aided Engineering provides a common forum for the dissemination of research and development results in the areas of computer-aided design and engineering of RF, microwave, and millimeter-wave components, circuits, subsystems, and antennas. The journal is intended to be a single source of valuable information for all engineers and technicians, RF/microwave/mm-wave CAD tool vendors, researchers in industry, government and academia, professors and students, and systems engineers involved in RF/microwave/mm-wave technology. Multidisciplinary in scope, the journal publishes peer-reviewed articles and short papers on topics that include, but are not limited to. . . -Computer-Aided Modeling -Computer-Aided Analysis -Computer-Aided Optimization -Software and Manufacturing Techniques -Computer-Aided Measurements -Measurements Interfaced with CAD Systems In addition, the scope of the journal includes features such as software reviews, RF/microwave/mm-wave CAD related news, including brief reviews of CAD papers published elsewhere and a "Letters to the Editor" section.
期刊最新文献
Computationally Efficient Design Optimization of Multiband Antenna Using Deep Learning–Based Surrogate Models Wide-Passband Microstrip Filters With Wide Stopband Based on Half-Wavelength Resonators Coupled by Short Connected Line Miniaturized Ss-Shaped CP Circular Patch Antenna Design for Implantable Medical Device Applications FA-UNet: Semantic Segmentation of Passive Millimeter–Wave Images for Concealed Object Detection Numerical Analysis of Therapeutic Effects by Varying Slot Numbers and Slot-to-Slot Distance in Microwave Ablation Using Multislot Coaxial Antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1