Shouhao Zhou, Xuelin Huang, Chan Shen, Hagop M. Kantarjian
{"title":"Bayesian Learning of Personalized Longitudinal Biomarker Trajectory","authors":"Shouhao Zhou, Xuelin Huang, Chan Shen, Hagop M. Kantarjian","doi":"10.1007/s40745-023-00486-0","DOIUrl":null,"url":null,"abstract":"<div><p>This work concerns the effective personalized prediction of longitudinal biomarker trajectory, motivated by a study of cancer targeted therapy for patients with chronic myeloid leukemia (CML). Continuous monitoring with a confirmed biomarker of residual disease is a key component of CML management for early prediction of disease relapse. However, the longitudinal biomarker measurements have highly heterogeneous trajectories between subjects (patients) with various shapes and patterns. It is believed that the trajectory is clinically related to the development of treatment resistance, but there was limited knowledge about the underlying mechanism. To address the challenge, we propose a novel Bayesian approach to modeling the distribution of subject-specific longitudinal trajectories. It exploits flexible Bayesian learning to accommodate complex changing patterns over time and non-linear covariate effects, and allows for real-time prediction of both in-sample and out-of-sample subjects. The generated information can help make clinical decisions, and consequently enhance the personalized treatment management of precision medicine.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-023-00486-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
This work concerns the effective personalized prediction of longitudinal biomarker trajectory, motivated by a study of cancer targeted therapy for patients with chronic myeloid leukemia (CML). Continuous monitoring with a confirmed biomarker of residual disease is a key component of CML management for early prediction of disease relapse. However, the longitudinal biomarker measurements have highly heterogeneous trajectories between subjects (patients) with various shapes and patterns. It is believed that the trajectory is clinically related to the development of treatment resistance, but there was limited knowledge about the underlying mechanism. To address the challenge, we propose a novel Bayesian approach to modeling the distribution of subject-specific longitudinal trajectories. It exploits flexible Bayesian learning to accommodate complex changing patterns over time and non-linear covariate effects, and allows for real-time prediction of both in-sample and out-of-sample subjects. The generated information can help make clinical decisions, and consequently enhance the personalized treatment management of precision medicine.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.