Shape design of channels and manifolds in a multichannel microreactor using thermal-fluid compartment models

IF 2.5 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in chemical engineering Pub Date : 2022-11-03 DOI:10.3389/fceng.2022.838336
O. Tonomura, M. Noda, S. Hasebe
{"title":"Shape design of channels and manifolds in a multichannel microreactor using thermal-fluid compartment models","authors":"O. Tonomura, M. Noda, S. Hasebe","doi":"10.3389/fceng.2022.838336","DOIUrl":null,"url":null,"abstract":"In the design of microreactors, the shape as well as the size is an important design factor for achieving high performance. Recent advances in computational fluid dynamics (CFD) enable us to know flow and temperature distributions in microreactors of various shapes and sizes without conducting experiments. However, it is often important to develop a simpler model than CFD to further reduce the computational time required for reactor design with iterative performance evaluations. In this research, a thermal-fluid compartment model-based approach is proposed for basic design of a multichannel microreactor. The proposed approach consists of two parts, i.e., thermal design and fluid design. In the thermal design part, two types of thermal compartments, which are used to discretize a reaction channel surrounded by wall and describe the mass and heat balances over the channel, are developed to optimize the channel shape. In the fluid design part, three types of fluid compartments, which are used to discretize the reactor and describe the mass and pressure balances over the reactor, are introduced to optimize manifold shape. The proposed approach is applied to a design problem and the results show that microchannels and manifolds with varying width are effective in realizing the uniform temperature and flow distributions, respectively. In addition to the proposed design approach, a transfer function-based compartment model is developed to estimate the residence time distribution of fluid in a microreactor without running time-dependent CFD simulation.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in chemical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fceng.2022.838336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the design of microreactors, the shape as well as the size is an important design factor for achieving high performance. Recent advances in computational fluid dynamics (CFD) enable us to know flow and temperature distributions in microreactors of various shapes and sizes without conducting experiments. However, it is often important to develop a simpler model than CFD to further reduce the computational time required for reactor design with iterative performance evaluations. In this research, a thermal-fluid compartment model-based approach is proposed for basic design of a multichannel microreactor. The proposed approach consists of two parts, i.e., thermal design and fluid design. In the thermal design part, two types of thermal compartments, which are used to discretize a reaction channel surrounded by wall and describe the mass and heat balances over the channel, are developed to optimize the channel shape. In the fluid design part, three types of fluid compartments, which are used to discretize the reactor and describe the mass and pressure balances over the reactor, are introduced to optimize manifold shape. The proposed approach is applied to a design problem and the results show that microchannels and manifolds with varying width are effective in realizing the uniform temperature and flow distributions, respectively. In addition to the proposed design approach, a transfer function-based compartment model is developed to estimate the residence time distribution of fluid in a microreactor without running time-dependent CFD simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于热流体隔室模型的多通道微反应器中通道和歧管的形状设计
在微反应器的设计中,形状和尺寸是实现高性能的重要设计因素。计算流体动力学(CFD)的最新进展使我们能够在不进行实验的情况下了解不同形状和尺寸的微反应器中的流动和温度分布。然而,开发一个比CFD更简单的模型来进一步减少反应堆设计和迭代性能评估所需的计算时间往往很重要。本研究提出了一种基于热流体室模型的多通道微反应器基本设计方法。该方法包括热设计和流体设计两部分。在热设计部分,设计了两种类型的热室,用于离散被壁包围的反应通道,并描述通道上的质量和热平衡,以优化通道形状。在流体设计部分,引入了三种类型的流体室,用于离散反应器和描述反应器上的质量和压力平衡,以优化歧管形状。将该方法应用于一个设计问题,结果表明微通道和变宽度的流形分别可以有效地实现均匀的温度和流量分布。除了提出的设计方法外,还开发了一种基于传递函数的隔间模型来估计流体在微反应器中的停留时间分布,而无需运行时间相关的CFD模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Editorial: The role of agave as feedstock within a sustainable circular bioeconomy Title: waste to wealth: the power of food-waste anaerobic digestion integrated with lactic acid fermentation Brewers’ spent grain pretreatment optimisation to enhance enzymatic hydrolysis of whole slurry and resuspended pellet Review of the recent advances on the fabrication, modification and application of electrospun TiO2 and ZnO nanofibers for the treatment of organic pollutants in wastewater Receptors for the recognition and extraction of lithium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1