Generating Paraphrase Using Simulated Annealing for Citation Sentences

IF 3.4 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Informatics Pub Date : 2023-03-30 DOI:10.3390/informatics10020034
Ridwan Ilyas, M. L. Khodra, R. Munir, Rila Mandala, D. H. Widyantoro
{"title":"Generating Paraphrase Using Simulated Annealing for Citation Sentences","authors":"Ridwan Ilyas, M. L. Khodra, R. Munir, Rila Mandala, D. H. Widyantoro","doi":"10.3390/informatics10020034","DOIUrl":null,"url":null,"abstract":"The paraphrase generator for citation sentences is used to produce several sentence alternatives to avoid plagiarism. Furthermore, the generation results need to pay attention to semantic similarity and lexical divergence standards. This study proposed the StoPGEN model as an algorithm for generating citation paraphrase sentences with stochastic output. The generation process is guided by an objective function using a simulated annealing algorithm to maintain the properties of semantic similarity and lexical divergence. The objective function is created by combining the two factors that maintain these properties. This study combined METEOR and PINC Scores in a linear weighting function that can be adjusted for its value tendency in one of the matrix functions. The dataset of citation sentences that had been labeled with paraphrases was used to test StoPGEN and other models for comparison. The StoPGEN model, with the citation sentences dataset, produced a BLEU score of 55.37, outperforming the bidirectional LSTM method with a value of 28.93. StoPGEN was also tested using Quora data by changing the language source in the architecture section resulting in a BLEU score of 22.37, outperforming UPSA 18.21. In addition, the qualitative evaluation results of the citation sentence generation based on respondents obtained an acceptance value of 50.80.","PeriodicalId":37100,"journal":{"name":"Informatics","volume":"10 1","pages":"34"},"PeriodicalIF":3.4000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/informatics10020034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The paraphrase generator for citation sentences is used to produce several sentence alternatives to avoid plagiarism. Furthermore, the generation results need to pay attention to semantic similarity and lexical divergence standards. This study proposed the StoPGEN model as an algorithm for generating citation paraphrase sentences with stochastic output. The generation process is guided by an objective function using a simulated annealing algorithm to maintain the properties of semantic similarity and lexical divergence. The objective function is created by combining the two factors that maintain these properties. This study combined METEOR and PINC Scores in a linear weighting function that can be adjusted for its value tendency in one of the matrix functions. The dataset of citation sentences that had been labeled with paraphrases was used to test StoPGEN and other models for comparison. The StoPGEN model, with the citation sentences dataset, produced a BLEU score of 55.37, outperforming the bidirectional LSTM method with a value of 28.93. StoPGEN was also tested using Quora data by changing the language source in the architecture section resulting in a BLEU score of 22.37, outperforming UPSA 18.21. In addition, the qualitative evaluation results of the citation sentence generation based on respondents obtained an acceptance value of 50.80.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用模拟退火法生成引用句子释义
引用句子的释义生成器用于生成几个句子替代,以避免抄袭。此外,生成结果还需要注意语义相似度和词法差异标准。本文提出了一种基于StoPGEN模型的随机输出引用释义生成算法。该算法以目标函数为指导,采用模拟退火算法,保持语义相似度和词法差异的特性。目标函数是由维持这些属性的两个因素组合而成的。本研究将METEOR和PINC分数结合在一个线性加权函数中,该函数可以根据其在其中一个矩阵函数中的值趋势进行调整。标注了释义的引用句子数据集被用来测试StoPGEN和其他模型进行比较。使用引用句数据集的StoPGEN模型的BLEU得分为55.37,优于双向LSTM方法的28.93。StoPGEN还使用Quora的数据进行了测试,通过改变架构部分的语言来源,结果BLEU得分为22.37,优于UPSA 18.21。此外,基于受访者的引文句生成的定性评价结果获得了50.80的接受值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Informatics
Informatics Social Sciences-Communication
CiteScore
6.60
自引率
6.50%
发文量
88
审稿时长
6 weeks
期刊最新文献
Simulation of discrete control systems with parallelism of behavior Formal description model and conditions for detecting linked coupling faults of the memory devices A model of homographs automatic identification for the Belarusian language Ontological analysis in the problems of container applications threat modelling Closed Gordon – Newell network with single-line poles and exponentially limited request waiting time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1