{"title":"A comprehensive review of the application of DEM in the investigation of batch solid mixers","authors":"B. Jadidi, M. Ebrahimi, F. Ein‐Mozaffari, A. Lohi","doi":"10.1515/revce-2021-0049","DOIUrl":null,"url":null,"abstract":"Abstract Powder mixing is a vital operation in a wide range of industries, such as food, pharmaceutical, and cosmetics. Despite the common use of mixing systems in various industries, often due to the complex nature of mixing systems, the effects of operating and design parameters on the mixers’ performance and final blend are not fully known, and therefore optimal parameters are selected through experience or trial and error. Experimental and numerical techniques have been widely used to analyze mixing systems and to gain a detailed understanding of mixing processes. The limitations associated with experimental techniques, however, have made discrete element method (DEM) a valuable complementary tool to obtain comprehensive particle level information about mixing systems. In the present study, the fundamentals of solid-solid mixing, segregation, and characteristics of different types of batch solid mixers are briefly reviewed. Previously published papers related to the application of DEM in studying mixing quality and assessing the influence of operating and design parameters on the mixing performance of various batch mixing systems are summarized in detail. The challenges with regards to the DEM simulation of mixing systems, the available solutions to address those challenges and our recommendations for future simulations of solid mixing are also presented and discussed.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2021-0049","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 10
Abstract
Abstract Powder mixing is a vital operation in a wide range of industries, such as food, pharmaceutical, and cosmetics. Despite the common use of mixing systems in various industries, often due to the complex nature of mixing systems, the effects of operating and design parameters on the mixers’ performance and final blend are not fully known, and therefore optimal parameters are selected through experience or trial and error. Experimental and numerical techniques have been widely used to analyze mixing systems and to gain a detailed understanding of mixing processes. The limitations associated with experimental techniques, however, have made discrete element method (DEM) a valuable complementary tool to obtain comprehensive particle level information about mixing systems. In the present study, the fundamentals of solid-solid mixing, segregation, and characteristics of different types of batch solid mixers are briefly reviewed. Previously published papers related to the application of DEM in studying mixing quality and assessing the influence of operating and design parameters on the mixing performance of various batch mixing systems are summarized in detail. The challenges with regards to the DEM simulation of mixing systems, the available solutions to address those challenges and our recommendations for future simulations of solid mixing are also presented and discussed.
期刊介绍:
Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.