{"title":"Effect of plasmonic coupling in different assembly of gold nanorods studied by FDTD","authors":"Aditya K. Sahu, Satyabrata Raj","doi":"10.1007/s13404-022-00307-x","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of the orientation of gold nanorods in different assemblies has been investigated using the finite difference time domain (FDTD) simulation method. To understand the relative orientation, we vary the size and angle in dimer geometries. Significant effects of plasmon coupling emerged in longitudinal resonances having end-to-end configurations of gold nanorods. The effect of orientational plasmon coupling in dimers gives rise to both bonding and anti-bonding plasmon modes. Effects of various geometries like primary monomer, dimer, trimer, and tetramer structures have been explored and compared with their higher nanorod ensembles. The asymmetric spectral response in a 4 × 4 gold nanorods array indicates a Fano-like resonance. The variation of gap distance in ordered arrays allowed modulation of the Fano resonance mode. The plasmon modes’ resonance wavelength and field enhancement have been tuned by varying the gap distance, angular orientation, size irregularity between the nanorods, and nanorod numbers in an array. The integrated nanostructures studied here are not only significant for fundamental research but also applications in plasmon-based devices.</p></div>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":"55 1","pages":"19 - 29"},"PeriodicalIF":2.2000,"publicationDate":"2022-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-022-00307-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 3
Abstract
The influence of the orientation of gold nanorods in different assemblies has been investigated using the finite difference time domain (FDTD) simulation method. To understand the relative orientation, we vary the size and angle in dimer geometries. Significant effects of plasmon coupling emerged in longitudinal resonances having end-to-end configurations of gold nanorods. The effect of orientational plasmon coupling in dimers gives rise to both bonding and anti-bonding plasmon modes. Effects of various geometries like primary monomer, dimer, trimer, and tetramer structures have been explored and compared with their higher nanorod ensembles. The asymmetric spectral response in a 4 × 4 gold nanorods array indicates a Fano-like resonance. The variation of gap distance in ordered arrays allowed modulation of the Fano resonance mode. The plasmon modes’ resonance wavelength and field enhancement have been tuned by varying the gap distance, angular orientation, size irregularity between the nanorods, and nanorod numbers in an array. The integrated nanostructures studied here are not only significant for fundamental research but also applications in plasmon-based devices.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.