Semi-proximal Augmented Lagrangian-Based Decomposition Methods for Primal Block-Angular Convex Composite Quadratic Conic Programming Problems

Xin-Yee Lam, Defeng Sun, K. Toh
{"title":"Semi-proximal Augmented Lagrangian-Based Decomposition Methods for Primal Block-Angular Convex Composite Quadratic Conic Programming Problems","authors":"Xin-Yee Lam, Defeng Sun, K. Toh","doi":"10.1287/IJOO.2019.0048","DOIUrl":null,"url":null,"abstract":"We first propose a semi-proximal augmented Lagrangian-based decomposition method to directly solve the primal form of a convex composite quadratic conic-programming problem with a primal block-angular structure. Using our algorithmic framework, we are able to naturally derive several well-known augmented Lagrangian-based decomposition methods for stochastic programming, such as the diagonal quadratic approximation method of Mulvey and Ruszczyński. Although it is natural to develop an augmented Lagrangian decomposition algorithm based on the primal problem, here, we demonstrate that it is, in fact, numerically more economical to solve the dual problem by an appropriately designed decomposition algorithm. In particular, we propose a semi-proximal symmetric Gauss–Seidel-based alternating direction method of multipliers (sGS-ADMM) for solving the corresponding dual problem. Numerical results show that our dual-based sGS-ADMM algorithm can very efficiently solve some very large instances of primal block-angular convex quadratic-programming problems. For example, one instance with more than 300,000 linear constraints and 12.5 million nonnegative variables is solved to the accuracy of 10-5 in the relative KKT residual in less than a minute on a modest desktop computer.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/IJOO.2019.0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We first propose a semi-proximal augmented Lagrangian-based decomposition method to directly solve the primal form of a convex composite quadratic conic-programming problem with a primal block-angular structure. Using our algorithmic framework, we are able to naturally derive several well-known augmented Lagrangian-based decomposition methods for stochastic programming, such as the diagonal quadratic approximation method of Mulvey and Ruszczyński. Although it is natural to develop an augmented Lagrangian decomposition algorithm based on the primal problem, here, we demonstrate that it is, in fact, numerically more economical to solve the dual problem by an appropriately designed decomposition algorithm. In particular, we propose a semi-proximal symmetric Gauss–Seidel-based alternating direction method of multipliers (sGS-ADMM) for solving the corresponding dual problem. Numerical results show that our dual-based sGS-ADMM algorithm can very efficiently solve some very large instances of primal block-angular convex quadratic-programming problems. For example, one instance with more than 300,000 linear constraints and 12.5 million nonnegative variables is solved to the accuracy of 10-5 in the relative KKT residual in less than a minute on a modest desktop computer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原始块角凸复合二次圆锥规划问题的半近似增广拉格朗日分解方法
我们首先提出了一种基于半近似增广拉格朗日的分解方法来直接求解具有原始块角结构的凸复合二次圆锥规划问题的原始形式。使用我们的算法框架,我们能够自然地导出随机规划的几种著名的基于增广拉格朗日的分解方法,例如Mulvey和Ruszczyński的对角二次逼近方法。尽管基于原始问题开发增广拉格朗日分解算法是很自然的,但在这里,我们证明了,事实上,通过适当设计的分解算法来解决对偶问题在数值上更经济。特别地,我们提出了一种基于半近似对称高斯-塞德尔的交替方向乘法器方法(sGS-ADMM)来解决相应的对偶问题。数值结果表明,我们的基于对偶的sGS-ADMM算法可以非常有效地解决一些非常大的原始块角凸二次规划问题。例如,在一台普通的台式计算机上,一个具有超过300000个线性约束和1250万个非负变量的实例在不到一分钟的时间内被求解到相对KKT残差的10-5的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1