Jie Yu, Lei Qiu, Yimeng Yin, Xing Li, Haohui Chen, Chizhong Wang, Huazhen Chang
{"title":"Poisoning Effects of Chlorine on V2O5–WO3/TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3","authors":"Jie Yu, Lei Qiu, Yimeng Yin, Xing Li, Haohui Chen, Chizhong Wang, Huazhen Chang","doi":"10.1007/s10563-022-09386-4","DOIUrl":null,"url":null,"abstract":"<div><p>Chlorine species, widely presented in industrial flue gas such as the waste incineration plants, can poison the catalysts and affect the selective catalytic reduction (SCR) performance. In this work, effects of Cl on the SCR performance of V<sub>2</sub>O<sub>5</sub>–WO<sub>3</sub>/TiO<sub>2</sub> (VW/Ti) catalysts were investigated by NH<sub>4</sub>Cl deposition. The results showed that the NO<sub><i>x</i></sub> conversion efficiency at low reaction temperature (< 300 °C) decreased with the loading of NH<sub>4</sub>Cl after calcination. It was found that instead of causing the chlorination of VW/Ti catalyst the NH<sub>4</sub>Cl decomposed into volatile Cl species due to the weak V–Cl bonding. Such decomposition reduced significantly the surface non-lattice oxygen species to inhibit NO adsorption and activation, but hardly affected the redox ability and acidity of VW/Ti catalyst. Time–resolved in situ DRIFTs results indicated that NH<sub>3</sub> activation and the SCR process predominated by Eley–Rideal mechanism were not influenced with NH<sub>4</sub>Cl impregnation, while the SCR at low temperature following a Langmuir–Hinshelwood path was limited by the decreased and weaker binding sites for NO activation.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"27 2","pages":"147 - 154"},"PeriodicalIF":2.1000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-022-09386-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Chlorine species, widely presented in industrial flue gas such as the waste incineration plants, can poison the catalysts and affect the selective catalytic reduction (SCR) performance. In this work, effects of Cl on the SCR performance of V2O5–WO3/TiO2 (VW/Ti) catalysts were investigated by NH4Cl deposition. The results showed that the NOx conversion efficiency at low reaction temperature (< 300 °C) decreased with the loading of NH4Cl after calcination. It was found that instead of causing the chlorination of VW/Ti catalyst the NH4Cl decomposed into volatile Cl species due to the weak V–Cl bonding. Such decomposition reduced significantly the surface non-lattice oxygen species to inhibit NO adsorption and activation, but hardly affected the redox ability and acidity of VW/Ti catalyst. Time–resolved in situ DRIFTs results indicated that NH3 activation and the SCR process predominated by Eley–Rideal mechanism were not influenced with NH4Cl impregnation, while the SCR at low temperature following a Langmuir–Hinshelwood path was limited by the decreased and weaker binding sites for NO activation.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.