Advances in Nonwoven-Based Separators for Lithium-Ion Batteries

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Fiber Materials Pub Date : 2023-09-08 DOI:10.1007/s42765-023-00322-3
Yan Yu, Man Liu, Ziye Chen, Zhihao Zhang, Tian Qiu, Zexu Hu, Hengxue Xiang, Liping Zhu, Guiyin Xu, Meifang Zhu
{"title":"Advances in Nonwoven-Based Separators for Lithium-Ion Batteries","authors":"Yan Yu,&nbsp;Man Liu,&nbsp;Ziye Chen,&nbsp;Zhihao Zhang,&nbsp;Tian Qiu,&nbsp;Zexu Hu,&nbsp;Hengxue Xiang,&nbsp;Liping Zhu,&nbsp;Guiyin Xu,&nbsp;Meifang Zhu","doi":"10.1007/s42765-023-00322-3","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion batteries (LIBs) are energy-storage devices with a high-energy density in which the separator provides a physical barrier between the cathode and anode, to prevent electrical short circuits. To meet the demands of high-performance batteries, the separator must have excellent electrolyte wettability, thermotolerance, mechanical strength, highly porous structures, and ionic conductivity. Numerous nonwoven-based separators have been used in LIBs due to their high porosity and large surface-to-volume ratios. However, the fabrication of multi-functional fibers, the construction of nonwoven separators, and their integration into energy-storage devices present grand challenges in fundamental theory and practical implementation. Herein, we systematically review the up-to-date concerning the design and preparation of nonwoven-based separators for LIBs. Recent progress in monolayer, composite, and solid electrolyte nonwoven-based separators and their fabrication strategies is discussed. Future challenges and directions toward advancements in separator technologies are also discussed to obtain separators with remarkable performance for high-energy density batteries.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"5 6","pages":"1827 - 1851"},"PeriodicalIF":17.2000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-023-00322-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries (LIBs) are energy-storage devices with a high-energy density in which the separator provides a physical barrier between the cathode and anode, to prevent electrical short circuits. To meet the demands of high-performance batteries, the separator must have excellent electrolyte wettability, thermotolerance, mechanical strength, highly porous structures, and ionic conductivity. Numerous nonwoven-based separators have been used in LIBs due to their high porosity and large surface-to-volume ratios. However, the fabrication of multi-functional fibers, the construction of nonwoven separators, and their integration into energy-storage devices present grand challenges in fundamental theory and practical implementation. Herein, we systematically review the up-to-date concerning the design and preparation of nonwoven-based separators for LIBs. Recent progress in monolayer, composite, and solid electrolyte nonwoven-based separators and their fabrication strategies is discussed. Future challenges and directions toward advancements in separator technologies are also discussed to obtain separators with remarkable performance for high-energy density batteries.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非织造基锂离子电池隔膜的研究进展
锂离子电池(lib)是一种具有高能量密度的储能装置,其中的隔膜在阴极和阳极之间提供了一个物理屏障,以防止电短路。为了满足高性能电池的要求,隔膜必须具有优异的电解质润湿性、耐热性、机械强度、高多孔结构和离子导电性。由于其高孔隙率和大表面体积比,许多非织造布基分离器已用于lib。然而,多功能纤维的制备、非织造隔膜的构建及其与储能装置的集成在基础理论和实际应用中都面临着巨大的挑战。在此,我们系统地回顾了有关无纺布基分离剂的设计和制备的最新进展。综述了近年来单层、复合和固体电解质非织造布基隔膜及其制备策略的研究进展。为了获得性能优异的高密度电池用隔膜,还讨论了隔膜技术未来面临的挑战和发展方向。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
期刊最新文献
Bioactive Glass-Reinforced Hybrid Microfibrous Spheres Promote Bone Defect Repair via Stem Cell Delivery Fiber/Yarn and Textile-Based Piezoresistive Pressure Sensors ACAn Energy-Autonomous Wearable Fabric Powered by High-Power Density Sweat-Activated Batteries for Health Monitoring Robust Dual Equivariant Gradient Antibacterial Wound Dressing-Loaded Artificial Skin with Nano-chitin Particles Via an Electrospinning-Reactive Strategy Fiber Science at Xinjiang University: A Special Issue Dedicated to Centennial Celebration of Xinjiang University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1