Wenjun Zhang, Luting Lv, Yusen Gong, Ye Li, Teng Ma
{"title":"Efficient Terrain-Aided Navigation System with Submap-Size Calculation and Embedded System","authors":"Wenjun Zhang, Luting Lv, Yusen Gong, Ye Li, Teng Ma","doi":"10.4031/mtsj.57.1.9","DOIUrl":null,"url":null,"abstract":"Abstract Underwater terrain-aided navigation (TAN) holds high potential for long-term underwater accurate navigation of autonomous underwater vehicles. TAN can locate a vehicle by calculating the similarity between an a priori map and a vehicle's real-time observation consisting\n of a set of bathymetric measurement points. However, the amount of measurement points in the real-time observation affects both positioning accuracy and computational consumption of the TAN system, making it challenging to calculate a suitable size of real-time observation in TAN. With a smooth\n seabed terrain, a small observation area leads to insufficient topographic features and finally an inaccurate matching result, while a large area with a mount of features results in high computational cost. This paper proposes a method to restrain the size of observation in TAN systems based\n on terrain entropy and difference of normals. Meanwhile, this paper implements the TAN algorithm into an embedded system architecture used by actual underwater vehicles that are already in service to reduce the power consumption of the TAN system. The effectiveness of the algorithm has been\n demonstrated through playback experiments based on a semi-physical simulation platform using a PC/104-embedded computer.","PeriodicalId":49878,"journal":{"name":"Marine Technology Society Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Technology Society Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4031/mtsj.57.1.9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Underwater terrain-aided navigation (TAN) holds high potential for long-term underwater accurate navigation of autonomous underwater vehicles. TAN can locate a vehicle by calculating the similarity between an a priori map and a vehicle's real-time observation consisting
of a set of bathymetric measurement points. However, the amount of measurement points in the real-time observation affects both positioning accuracy and computational consumption of the TAN system, making it challenging to calculate a suitable size of real-time observation in TAN. With a smooth
seabed terrain, a small observation area leads to insufficient topographic features and finally an inaccurate matching result, while a large area with a mount of features results in high computational cost. This paper proposes a method to restrain the size of observation in TAN systems based
on terrain entropy and difference of normals. Meanwhile, this paper implements the TAN algorithm into an embedded system architecture used by actual underwater vehicles that are already in service to reduce the power consumption of the TAN system. The effectiveness of the algorithm has been
demonstrated through playback experiments based on a semi-physical simulation platform using a PC/104-embedded computer.
期刊介绍:
The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers, six times a year, on subjects of interest to the society: marine technology, ocean science, marine policy, and education.