Distributionally Robust Optimization Based on Kernel Density Estimation and Mean-Entropic Value-at-Risk

Wei Liu, Li Yang, Bo Yu
{"title":"Distributionally Robust Optimization Based on Kernel Density Estimation and Mean-Entropic Value-at-Risk","authors":"Wei Liu, Li Yang, Bo Yu","doi":"10.1287/ijoo.2022.0076","DOIUrl":null,"url":null,"abstract":"In this paper, a distributionally robust optimization model based on kernel density estimation (KDE) and mean entropic value-at-risk (EVaR) is proposed, where the ambiguity set is defined as a KDE-[Formula: see text]-divergence “ball” centered at the empirical distribution in the weighted KDE distribution function family, which is a finite-dimensional set. Instead of the joint probability distribution of the random vector, the one-dimensional probability distribution of the random loss function is approximated by the univariate weighted KDE for dimensionality reduction. Under the mild conditions of the kernel and [Formula: see text]-divergence function, the computationally tractable reformulation of the corresponding distributionally robust mean-EVaR optimization model is derived by Fenchel’s duality theory. Convergence of the optimal value and the solution set of the distributionally robust optimization problem based on KDE and mean-EVaR to those of the corresponding stochastic programming problem with the true distribution is proved. For some special cases, including portfolio selection, newsvendor problem, and linear two-stage stochastic programming problem, concrete tractable reformulations are given. Primary empirical test results for portfolio selection and project management problems show that the proposed model is promising.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2022.0076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a distributionally robust optimization model based on kernel density estimation (KDE) and mean entropic value-at-risk (EVaR) is proposed, where the ambiguity set is defined as a KDE-[Formula: see text]-divergence “ball” centered at the empirical distribution in the weighted KDE distribution function family, which is a finite-dimensional set. Instead of the joint probability distribution of the random vector, the one-dimensional probability distribution of the random loss function is approximated by the univariate weighted KDE for dimensionality reduction. Under the mild conditions of the kernel and [Formula: see text]-divergence function, the computationally tractable reformulation of the corresponding distributionally robust mean-EVaR optimization model is derived by Fenchel’s duality theory. Convergence of the optimal value and the solution set of the distributionally robust optimization problem based on KDE and mean-EVaR to those of the corresponding stochastic programming problem with the true distribution is proved. For some special cases, including portfolio selection, newsvendor problem, and linear two-stage stochastic programming problem, concrete tractable reformulations are given. Primary empirical test results for portfolio selection and project management problems show that the proposed model is promising.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核密度估计和风险熵均值的分布鲁棒优化
本文提出了一种基于核密度估计(KDE)和平均风险熵(EVaR)的分布鲁棒优化模型,其中模糊集被定义为加权KDE分布函数族中以经验分布为中心的KDE-[公式:见正文]-散度“球”,这是一个有限维集。代替随机向量的联合概率分布,通过单变量加权KDE来近似随机损失函数的一维概率分布,以进行降维。在核和[公式:见正文]-散度函数的温和条件下,利用Fenchel对偶理论导出了相应的分布鲁棒均值EVaR优化模型的可计算的重新表述。证明了基于KDE和均值EVaR的分布鲁棒优化问题的最优值和解集与相应的真分布随机规划问题的最优解集和解集的收敛性。对于一些特殊情况,包括投资组合选择、报贩问题和线性两阶段随机规划问题,给出了具体的可处理公式。对投资组合选择和项目管理问题的初步实证检验结果表明,所提出的模型是有前景的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Stochastic Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Equality-Constrained Optimization Scenario-Based Robust Optimization for Two-Stage Decision Making Under Binary Uncertainty On the Hardness of Learning from Censored and Nonstationary Demand Temporal Bin Packing with Half-Capacity Jobs Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1