Caroline M. Dumas, Anna M. Schmoker, Shannon N. Bennett, Amara Chittenden, Chelsea Darwin, Helena Gaffney, H. Lewis, Eliana Moskovitz, Jonah Rehak, Anna Renzi, Claire Rothfelder, Adam Slamin, Megan Tammaro, L. Sweet, B. Ballif
{"title":"Novel Interactors of the SH2 Domain of the Signaling Adaptors CRK and CRKL Identified in Neuro2A Cells","authors":"Caroline M. Dumas, Anna M. Schmoker, Shannon N. Bennett, Amara Chittenden, Chelsea Darwin, Helena Gaffney, H. Lewis, Eliana Moskovitz, Jonah Rehak, Anna Renzi, Claire Rothfelder, Adam Slamin, Megan Tammaro, L. Sweet, B. Ballif","doi":"10.33697/ajur.2022.068","DOIUrl":null,"url":null,"abstract":"CT10 regulator of kinase (CRK) and CRK-like (CRKL) form a family of signaling adaptor proteins that serve important roles in the regulation of fundamental cellular processes, including cell motility and proliferation, in a variety of cell types. The Src Homology 2 (SH2) domain of CRK and CRKL interacts with proteins containing phosphorylated tyrosine-X-X-proline (pYXXP) motifs, facilitating complex formation during signaling events. A handful of CRK/CRKL-SH2-specific interactors have been identified to date, although in silico analyses suggest that many additional interactors remain to be found. To identify CRK/CRKL-SH2 interactors with potential involvement in neuronal development, we conducted a mass spectrometry-based proteomics screen using a neuronal cell line (Neuro2A, or N2A). This resulted in the identification of 132 (6 known and 126 novel) YXXP-containing CRK/CRKL-SH2 interactors, of which 77 were stimulated to bind to the CRK/CRKL-SH2 domain following tyrosine phosphatase inhibition. Approximately half of the proteins identified were common interactors of both the CRK- and CRKL-SH2 domains. However, both CRK family member SH2 domains exhibited unique binding partners across experimental replicates. These findings reveal an abundance of novel neuronal CRK/CRKL-SH2 domain binding partners and suggest that CRK family SH2 domains possess undescribed docking preferences beyond the canonical pYXXP motif. KEYWORDS: CRK; CRKL; SH2; LC-MS/MS; Proteomics; Neurodevelopment; Signal Transduction","PeriodicalId":72177,"journal":{"name":"American journal of undergraduate research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of undergraduate research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33697/ajur.2022.068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
CT10 regulator of kinase (CRK) and CRK-like (CRKL) form a family of signaling adaptor proteins that serve important roles in the regulation of fundamental cellular processes, including cell motility and proliferation, in a variety of cell types. The Src Homology 2 (SH2) domain of CRK and CRKL interacts with proteins containing phosphorylated tyrosine-X-X-proline (pYXXP) motifs, facilitating complex formation during signaling events. A handful of CRK/CRKL-SH2-specific interactors have been identified to date, although in silico analyses suggest that many additional interactors remain to be found. To identify CRK/CRKL-SH2 interactors with potential involvement in neuronal development, we conducted a mass spectrometry-based proteomics screen using a neuronal cell line (Neuro2A, or N2A). This resulted in the identification of 132 (6 known and 126 novel) YXXP-containing CRK/CRKL-SH2 interactors, of which 77 were stimulated to bind to the CRK/CRKL-SH2 domain following tyrosine phosphatase inhibition. Approximately half of the proteins identified were common interactors of both the CRK- and CRKL-SH2 domains. However, both CRK family member SH2 domains exhibited unique binding partners across experimental replicates. These findings reveal an abundance of novel neuronal CRK/CRKL-SH2 domain binding partners and suggest that CRK family SH2 domains possess undescribed docking preferences beyond the canonical pYXXP motif. KEYWORDS: CRK; CRKL; SH2; LC-MS/MS; Proteomics; Neurodevelopment; Signal Transduction