{"title":"Optimization of Culture and Sporulation for Two Plant Beneficial Streptomyces Strains","authors":"Da-Ran Kim, Youn-Sig Kwak","doi":"10.5423/rpd.2023.29.2.174","DOIUrl":null,"url":null,"abstract":"The limited effectiveness of current plant disease management treatments necessitates the development of new methods for controlling diseases using beneficial microbes. Demanding sustainable agriculture is increasingly highlighted as a biocontrol approach, particularly Streptomyces species known to produce a variety of antibiotic compounds and secondary metabolites. The Streptomyces globisporus SP6C4 strain and Streptomyces sp. S8 have been reported as potent antifungal agents and are gaining attention for improving crop growth in sustainable agriculture. In this study, we investigated the use of Streptomyces species formulations to enhance bacterial growth with nitrogen sources. Specifically, the addition of L-glutamic acid and L-cysteine resulted in earlier sporulation and bacterial growth in Streptomyces strains, respectively. This approach could expand the range of fermentation techniques in agriculture and be useful for controlling plant growth-promoting bacteria.","PeriodicalId":36349,"journal":{"name":"Research in Plant Disease","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Plant Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5423/rpd.2023.29.2.174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The limited effectiveness of current plant disease management treatments necessitates the development of new methods for controlling diseases using beneficial microbes. Demanding sustainable agriculture is increasingly highlighted as a biocontrol approach, particularly Streptomyces species known to produce a variety of antibiotic compounds and secondary metabolites. The Streptomyces globisporus SP6C4 strain and Streptomyces sp. S8 have been reported as potent antifungal agents and are gaining attention for improving crop growth in sustainable agriculture. In this study, we investigated the use of Streptomyces species formulations to enhance bacterial growth with nitrogen sources. Specifically, the addition of L-glutamic acid and L-cysteine resulted in earlier sporulation and bacterial growth in Streptomyces strains, respectively. This approach could expand the range of fermentation techniques in agriculture and be useful for controlling plant growth-promoting bacteria.