Effect of Mn substitution on the structure and hydrogen storage properties of La0.75Ce0.25Ni5-xMnx alloy

IF 2.7 4区 工程技术 Q3 ELECTROCHEMISTRY Journal of Electrochemical Energy Conversion and Storage Pub Date : 2022-09-21 DOI:10.1115/1.4055694
J. Duan, Zhenwei Wang, Jian Lin, Lijun Lv, Xingbo Han, W. Liu, Jun Li
{"title":"Effect of Mn substitution on the structure and hydrogen storage properties of La0.75Ce0.25Ni5-xMnx alloy","authors":"J. Duan, Zhenwei Wang, Jian Lin, Lijun Lv, Xingbo Han, W. Liu, Jun Li","doi":"10.1115/1.4055694","DOIUrl":null,"url":null,"abstract":"\n In this study, La0.75Ce0.25Ni5-xMnx (x = 0, 0.1, 0.2, 0.3) alloys were prepared by vacuum arc melting. The effect of the addition of Mn on the alloy microstructure and hydrogen absorption/desorption properties were explored by characterizing X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle size test, hydrogen absorption kinetic test, and P-C-T test. The XRD results show that the series of alloys are single-phase alloys composed of the LaNi5 phase, and the cell volume of the alloy gradually increases as the amount of Mn replacing Ni increases. The P-C-T curve of the alloy shows that the alloy has obvious hydrogen absorption/desorption plateau regions, which gradually decrease with increasing Mn content, while the hydrogen storage capacity remains unchanged. The hydrogen absorption kinetic curve of the alloy was tested, and it was found that the hydrogen absorption rate of the alloy increased with the increase of Mn content. These studies show that doping the Mn element in the La0.75Ce0.25Ni5-xMnx (x = 0, 0.1, 0.2, 0.3) alloys may regulate plateau pressure without affecting the hydrogen storage capacity or kinetics properties, providing a reference for the application of this type of alloy in hydrogen pressurization, purification, etc.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055694","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, La0.75Ce0.25Ni5-xMnx (x = 0, 0.1, 0.2, 0.3) alloys were prepared by vacuum arc melting. The effect of the addition of Mn on the alloy microstructure and hydrogen absorption/desorption properties were explored by characterizing X-ray diffraction (XRD), scanning electron microscopy (SEM), laser particle size test, hydrogen absorption kinetic test, and P-C-T test. The XRD results show that the series of alloys are single-phase alloys composed of the LaNi5 phase, and the cell volume of the alloy gradually increases as the amount of Mn replacing Ni increases. The P-C-T curve of the alloy shows that the alloy has obvious hydrogen absorption/desorption plateau regions, which gradually decrease with increasing Mn content, while the hydrogen storage capacity remains unchanged. The hydrogen absorption kinetic curve of the alloy was tested, and it was found that the hydrogen absorption rate of the alloy increased with the increase of Mn content. These studies show that doping the Mn element in the La0.75Ce0.25Ni5-xMnx (x = 0, 0.1, 0.2, 0.3) alloys may regulate plateau pressure without affecting the hydrogen storage capacity or kinetics properties, providing a reference for the application of this type of alloy in hydrogen pressurization, purification, etc.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mn取代对La0.75Ce0.25Ni5-xMnx合金结构和储氢性能的影响
本研究采用真空电弧熔炼法制备La0.75Ce0.25Ni5-xMnx (x = 0,0.1, 0.2, 0.3)合金。通过x射线衍射(XRD)、扫描电镜(SEM)、激光粒度测试、吸氢动力学测试、P-C-T测试等手段,探讨Mn的加入对合金微观组织和吸氢/解吸性能的影响。XRD结果表明,该合金系由LaNi5相组成的单相合金,合金的胞体体积随着Mn取代Ni量的增加而逐渐增大。合金的P-C-T曲线表明,合金具有明显的吸氢/解吸平台区,随着Mn含量的增加,吸氢/解吸平台区逐渐减小,而储氢能力保持不变。对合金的吸氢动力学曲线进行了测试,发现合金的吸氢速率随着Mn含量的增加而增加。这些研究表明,在La0.75Ce0.25Ni5-xMnx (x = 0,0.1, 0.2, 0.3)合金中掺杂Mn元素可以在不影响储氢能力和动力学性能的情况下调节平台压力,为该类合金在氢气增压、净化等方面的应用提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
69
期刊介绍: The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.
期刊最新文献
Black-Fe2O3 Polyhedron-Assembled 3D Film Electrode with Enhanced Conductivity and Energy Density for Aqueous Solid-State Energy Storage Critical Review of Hydrogen Production via Seawater Electrolysis and Desalination: Evaluating Current Practices Internal temperature estimation of lithium-ion battery based on improved electro-thermal coupling model and ANFIS Supercapacitor voltage doubling equalization method based on adaptive grouping A High Ceramic Loading LATP-PVDF-Al2O3 Composite Film for Lithium-ion Batteries with Favorable Porous Microstructure and Enhanced Thermal Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1