{"title":"Hydrogen embrittlement of high-strength steels in thiosulphate solutions","authors":"J. S. Sa, J. C. Rocha, A. Bueno, J. Gomes","doi":"10.1080/1478422X.2023.2183551","DOIUrl":null,"url":null,"abstract":"ABSTRACT The susceptibility to hydrogen embrittlement of supermartensitic stainless steel (S13Cr), martensitic-ferritic stainless steel (17Cr), carbon steel (P110) and austenitic-ferritic stainless steels (2205 and 2507) was evaluated by slow strain rate tests using a modified NACE TM-0177 solution, with 10–3M NaS2O3 substituting the saturated H2S standard solution. Tests were conducted at 25°C, pH 2.7 and under galvanostatic polarisation with a cathodic charging of 10 mA/cm2. S13Cr, 17Cr, P110 and 2507 steels were susceptible to hydrogen embrittlement inthiosulphate, with S13Cr and 17Cr being the most sensitive to this mechanism, while 2205 showed no sign of ductility loss. This harmful effect was attributed to the hydrogen sulphide generated from thiosulphate.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"58 1","pages":"333 - 342"},"PeriodicalIF":1.5000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2023.2183551","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The susceptibility to hydrogen embrittlement of supermartensitic stainless steel (S13Cr), martensitic-ferritic stainless steel (17Cr), carbon steel (P110) and austenitic-ferritic stainless steels (2205 and 2507) was evaluated by slow strain rate tests using a modified NACE TM-0177 solution, with 10–3M NaS2O3 substituting the saturated H2S standard solution. Tests were conducted at 25°C, pH 2.7 and under galvanostatic polarisation with a cathodic charging of 10 mA/cm2. S13Cr, 17Cr, P110 and 2507 steels were susceptible to hydrogen embrittlement inthiosulphate, with S13Cr and 17Cr being the most sensitive to this mechanism, while 2205 showed no sign of ductility loss. This harmful effect was attributed to the hydrogen sulphide generated from thiosulphate.
期刊介绍:
Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.