{"title":"Computational Intelligence Prediction Model Integrating Empirical Mode Decomposition, Principal Component Analysis, and Weighted k -Nearest Neighbor","authors":"Lillian H. Tang, Heping Pan, Yiyong Yao","doi":"10.11989/JEST.1674-862X.80124016","DOIUrl":null,"url":null,"abstract":"On the basis of machine leaning, suitable algorithms can make advanced time series analysis. This paper proposes a complex k-nearest neighbor (KNN) model for predicting financial time series. This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition (EMD) for financial time series signal analysis and principal component analysis (PCA) for the dimension reduction. The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading. Finally, prediction is generated via regression on the selected nearest neighbors. The structure of the model as a whole is original. The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index, an individual stock, and the EUR/USD exchange rate.","PeriodicalId":53467,"journal":{"name":"Journal of Electronic Science and Technology","volume":"18 1","pages":"341-349"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Science and Technology","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.11989/JEST.1674-862X.80124016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
On the basis of machine leaning, suitable algorithms can make advanced time series analysis. This paper proposes a complex k-nearest neighbor (KNN) model for predicting financial time series. This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition (EMD) for financial time series signal analysis and principal component analysis (PCA) for the dimension reduction. The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading. Finally, prediction is generated via regression on the selected nearest neighbors. The structure of the model as a whole is original. The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index, an individual stock, and the EUR/USD exchange rate.
期刊介绍:
JEST (International) covers the state-of-the-art achievements in electronic science and technology, including the most highlight areas: ¨ Communication Technology ¨ Computer Science and Information Technology ¨ Information and Network Security ¨ Bioelectronics and Biomedicine ¨ Neural Networks and Intelligent Systems ¨ Electronic Systems and Array Processing ¨ Optoelectronic and Photonic Technologies ¨ Electronic Materials and Devices ¨ Sensing and Measurement ¨ Signal Processing and Image Processing JEST (International) is dedicated to building an open, high-level academic journal supported by researchers, professionals, and academicians. The Journal has been fully indexed by Ei INSPEC and has published, with great honor, the contributions from more than 20 countries and regions in the world.