Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Topics in Current Chemistry Pub Date : 2021-03-16 DOI:10.1007/s41061-021-00328-8
Dongge Ma
{"title":"Status and Prospects of Aggregation-Induced Emission Materials in Organic Optoelectronic Devices","authors":"Dongge Ma","doi":"10.1007/s41061-021-00328-8","DOIUrl":null,"url":null,"abstract":"<p>Aggregation induced emission (AIE) luminogens (AIEgens) have great potential in the field of organic optoelectronic devices because of their highly efficient emission property in solid state. For example, high efficiency organic light-emitting diodes (OLEDs) based on AIEgens have been developed successfully. Some AIEgens also show good photovoltaic response properties for organic solar cells (OSCs) and organic photodetectors (OPDs), and lasing properties for optically pumping organic lasers (OLs). The review will cover the status and prospects of AIEgens in OLEDs, OLs, OSCs and OPDs. It is expected that AIEgens will become an important organic optoelectronic material system in the future.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 3","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00328-8","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-021-00328-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

Abstract

Aggregation induced emission (AIE) luminogens (AIEgens) have great potential in the field of organic optoelectronic devices because of their highly efficient emission property in solid state. For example, high efficiency organic light-emitting diodes (OLEDs) based on AIEgens have been developed successfully. Some AIEgens also show good photovoltaic response properties for organic solar cells (OSCs) and organic photodetectors (OPDs), and lasing properties for optically pumping organic lasers (OLs). The review will cover the status and prospects of AIEgens in OLEDs, OLs, OSCs and OPDs. It is expected that AIEgens will become an important organic optoelectronic material system in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机光电器件中聚集致发射材料的研究现状与展望
聚集诱导发射(AIE)发光源由于其在固态下的高效发射特性,在有机光电器件领域具有很大的应用潜力。例如,基于AIEgens的高效有机发光二极管(oled)已被成功开发。一些AIEgens在有机太阳能电池(OSCs)和有机光电探测器(opd)中也表现出良好的光伏响应性能,在光泵有机激光器(OLs)中也表现出良好的激光特性。综述了有机发光二极管(oled)、有机发光二极管(OLs)、有机发光二极管(osc)和有机发光二极管(opd)中氮化镓的现状和前景。预计未来AIEgens将成为重要的有机光电材料体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry Chemistry-General Chemistry
CiteScore
13.70
自引率
1.20%
发文量
48
期刊介绍: Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.
期刊最新文献
Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2 The Intramolecular Povarov Tool in the Construction of Fused Nitrogen-Containing Heterocycles Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis Multicomponent Reactions Using C,N-Binucleophilic Nature of Aminopyrazoles: Construction of Pyrazole-Fused Heterocycles Laser-Induced Transfer of Functional Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1