Mathematical derivation and mechanism analysis of beta oscillations in a cortex-pallidum model.

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-06-01 Epub Date: 2023-03-23 DOI:10.1007/s11571-023-09951-1
Minbo Xu, Bing Hu, Zhizhi Wang, Luyao Zhu, Jiahui Lin, Dingjiang Wang
{"title":"Mathematical derivation and mechanism analysis of beta oscillations in a cortex-pallidum model.","authors":"Minbo Xu, Bing Hu, Zhizhi Wang, Luyao Zhu, Jiahui Lin, Dingjiang Wang","doi":"10.1007/s11571-023-09951-1","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we develop a new cortex-pallidum model to study the origin mechanism of Parkinson's oscillations in the cortex. In contrast to many previous models, the globus pallidus internal (GPi) and externa (GPe) both exert direct inhibitory feedback to the cortex. Using Hopf bifurcation analysis, two new critical conditions for oscillations, which can include the self-feedback projection of GPe, are obtained. In this paper, we find that the average discharge rate (ADR) is an important marker of oscillations, which can divide Hopf bifurcations into two types that can uniformly be used to explain the oscillation mechanism. Interestingly, the ADR of the cortex first increases and then decreases with increasing coupling weights that are projected to the GPe. Regarding the Hopf bifurcation critical conditions, the quantitative relationship between the inhibitory projection and excitatory projection to the GPe is monotonically increasing; in contrast, the relationship between different coupling weights in the cortex is monotonically decreasing. In general, the oscillation amplitude is the lowest near the bifurcation points and reaches the maximum value with the evolution of oscillations. The GPe is an effective target for deep brain stimulation to alleviate oscillations in the cortex.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"1359-1378"},"PeriodicalIF":4.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11143146/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11571-023-09951-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a new cortex-pallidum model to study the origin mechanism of Parkinson's oscillations in the cortex. In contrast to many previous models, the globus pallidus internal (GPi) and externa (GPe) both exert direct inhibitory feedback to the cortex. Using Hopf bifurcation analysis, two new critical conditions for oscillations, which can include the self-feedback projection of GPe, are obtained. In this paper, we find that the average discharge rate (ADR) is an important marker of oscillations, which can divide Hopf bifurcations into two types that can uniformly be used to explain the oscillation mechanism. Interestingly, the ADR of the cortex first increases and then decreases with increasing coupling weights that are projected to the GPe. Regarding the Hopf bifurcation critical conditions, the quantitative relationship between the inhibitory projection and excitatory projection to the GPe is monotonically increasing; in contrast, the relationship between different coupling weights in the cortex is monotonically decreasing. In general, the oscillation amplitude is the lowest near the bifurcation points and reaches the maximum value with the evolution of oscillations. The GPe is an effective target for deep brain stimulation to alleviate oscillations in the cortex.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑皮层-苍白球模型中β振荡的数学推导和机理分析
在本文中,我们建立了一个新的皮层-苍白球模型来研究帕金森氏症皮层振荡的起源机制。与之前的许多模型不同的是,苍白球内部(GPi)和外部(GPe)都对大脑皮层施加直接的抑制反馈。通过霍普夫分岔分析,我们得到了两个新的振荡临界条件,其中可以包括 GPe 的自我反馈投射。本文发现,平均放电率(ADR)是振荡的一个重要标志,它可以将霍普夫分岔分为两种类型,统一用于解释振荡机制。有趣的是,随着投射到 GPe 的耦合权重的增加,皮层的 ADR 先增加后减少。就霍普夫分岔临界条件而言,投射到 GPe 的抑制性投射和兴奋性投射之间的数量关系是单调递增的;相反,皮层中不同耦合权重之间的关系是单调递减的。一般来说,振荡振幅在分叉点附近最低,并随着振荡的演变达到最大值。GPe 是深部脑刺激的有效目标,可以缓解大脑皮层的振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Publication Information Issue Editorial Masthead Corroborating the Monro-Kellie Principles. High-Performance Flexible Strain Sensor Enhanced by Functionally Partitioned Conductive Network for Intelligent Monitoring of Human Activities Carbon Nanotube-Enhanced Liquid Metal Composite Ink for Strain Sensing and Digital Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1