Design and preliminary evaluation of a flexible exoskeleton to assist with lifting.

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2021-01-11 eCollection Date: 2020-01-01 DOI:10.1017/wtc.2020.10
S Emily Chang, Taylor Pesek, Timothy R Pote, Joshua Hull, Jack Geissinger, Athulya A Simon, Mohammad Mehdi Alemi, Alan T Asbeck
{"title":"Design and preliminary evaluation of a flexible exoskeleton to assist with lifting.","authors":"S Emily Chang, Taylor Pesek, Timothy R Pote, Joshua Hull, Jack Geissinger, Athulya A Simon, Mohammad Mehdi Alemi, Alan T Asbeck","doi":"10.1017/wtc.2020.10","DOIUrl":null,"url":null,"abstract":"<p><p>We present a passive (unpowered) exoskeleton that assists the back during lifting. Our exoskeleton uses carbon fiber beams as the sole means to store energy and return it to the wearer. To motivate the design, we present general requirements for the design of a lifting exoskeleton, including calculating the required torque to support the torso for people of different weights and heights. We compare a number of methods of energy storage for exoskeletons in terms of mass, volume, hysteresis, and cycle life. We then discuss the design of our exoskeleton, and show how the torso assembly leads to balanced forces. We characterize the energy storage in the exoskeleton and the torque it provides during testing with human subjects. Ten participants performed freestyle, stoop, and squat lifts. Custom image processing software was used to extract the curvature of the carbon fiber beams in the exoskeleton to determine the stored energy. During freestyle lifting, it stores an average of 59.3 J and provides a peak torque of 71.7 Nm.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"e10"},"PeriodicalIF":4.7000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2020.10","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present a passive (unpowered) exoskeleton that assists the back during lifting. Our exoskeleton uses carbon fiber beams as the sole means to store energy and return it to the wearer. To motivate the design, we present general requirements for the design of a lifting exoskeleton, including calculating the required torque to support the torso for people of different weights and heights. We compare a number of methods of energy storage for exoskeletons in terms of mass, volume, hysteresis, and cycle life. We then discuss the design of our exoskeleton, and show how the torso assembly leads to balanced forces. We characterize the energy storage in the exoskeleton and the torque it provides during testing with human subjects. Ten participants performed freestyle, stoop, and squat lifts. Custom image processing software was used to extract the curvature of the carbon fiber beams in the exoskeleton to determine the stored energy. During freestyle lifting, it stores an average of 59.3 J and provides a peak torque of 71.7 Nm.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计和初步评估一个灵活的外骨骼,以协助提升
摘要:我们提出了一种被动(无动力)外骨骼,在提升过程中帮助背部。我们的外骨骼使用碳纤维梁作为储存能量并将其返回给佩戴者的唯一手段。为了激励设计,我们提出了起重外骨骼设计的一般要求,包括计算不同体重和身高的人支撑躯干所需的扭矩。我们比较了外骨骼在质量、体积、迟滞和循环寿命方面的一些能量存储方法。然后我们讨论我们的外骨骼的设计,并显示如何躯干组装导致平衡的力量。我们描述了外骨骼中的能量储存以及它在人体测试中提供的扭矩。10名参与者表演自由式、弯腰和深蹲举。使用定制的图像处理软件提取外骨骼中碳纤维梁的曲率以确定存储的能量。在自由式提升过程中,它的平均扭矩为59.3 J,峰值扭矩为71.7 Nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
期刊最新文献
Issue Editorial Masthead Issue Publication Information Celebrating the 90th Birthday of Professor Alan Jay Heeger Bidirectional Magnetization Switching in a Ferrimagnetic Insulator by a Monochiral Cu(II)–Leucine Complex Performance Improvement of the Triboelectric-Electromagnetic Hybrid Generator with a Differential Mechanism by Wind Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1