Dimensional reduction of a poromechanical cardiac model for myocardial perfusion studies

IF 2.2 Q2 ENGINEERING, MULTIDISCIPLINARY Applications in engineering science Pub Date : 2022-12-01 DOI:10.1016/j.apples.2022.100121
Radomír Chabiniok , Bruno Burtschell , Dominique Chapelle , Philippe Moireau
{"title":"Dimensional reduction of a poromechanical cardiac model for myocardial perfusion studies","authors":"Radomír Chabiniok ,&nbsp;Bruno Burtschell ,&nbsp;Dominique Chapelle ,&nbsp;Philippe Moireau","doi":"10.1016/j.apples.2022.100121","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we adapt a previously developed poromechanical formulation to model the perfusion of myocardium during a cardiac cycle. First, a complete model is derived in 3D. Then, we perform a dimensional reduction under the assumption of spherical symmetry and propose a numerical algorithm that enables us to perform simulations of the myocardial perfusion throughout the cardiac cycle. These simulations illustrate the use of the proposed model to represent various physiological and pathological scenarios, specifically the vasodilation in the coronary network (to reproduce the standard clinical assessment of myocardial perfusion and perfusion reserve), the stenosis of a large coronary artery, an increased vascular resistance in the microcirculation (microvascular disease) and the consequences of inotropic activation (increased myocardial contractility) particularly at the level of the systolic flow impediment. Our results show that the model gives promising qualitative reproductions of complex physiological phenomena. This paves the way for future quantitative studies using clinical or experimental data.</p></div>","PeriodicalId":72251,"journal":{"name":"Applications in engineering science","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666496822000371/pdfft?md5=5aeb03fa0103bdbc774288bd7014dac0&pid=1-s2.0-S2666496822000371-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in engineering science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666496822000371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we adapt a previously developed poromechanical formulation to model the perfusion of myocardium during a cardiac cycle. First, a complete model is derived in 3D. Then, we perform a dimensional reduction under the assumption of spherical symmetry and propose a numerical algorithm that enables us to perform simulations of the myocardial perfusion throughout the cardiac cycle. These simulations illustrate the use of the proposed model to represent various physiological and pathological scenarios, specifically the vasodilation in the coronary network (to reproduce the standard clinical assessment of myocardial perfusion and perfusion reserve), the stenosis of a large coronary artery, an increased vascular resistance in the microcirculation (microvascular disease) and the consequences of inotropic activation (increased myocardial contractility) particularly at the level of the systolic flow impediment. Our results show that the model gives promising qualitative reproductions of complex physiological phenomena. This paves the way for future quantitative studies using clinical or experimental data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于心肌灌注研究的孔隙力学心脏模型的降维
在本文中,我们采用先前开发的孔隙力学公式来模拟心脏周期期间心肌的灌注。首先,建立完整的三维模型。然后,我们在球对称假设下进行降维,并提出一种数值算法,使我们能够在整个心脏周期中进行心肌灌注的模拟。这些模拟说明了所提出的模型用于表示各种生理和病理情景的使用,特别是冠状动脉网络中的血管舒张(再现心肌灌注和灌注储备的标准临床评估),大冠状动脉狭窄,微循环血管阻力增加(微血管疾病)和肌力激活(心肌收缩力增加)的后果,特别是在收缩血流障碍水平。我们的结果表明,该模型对复杂的生理现象给出了有希望的定性再现。这为将来使用临床或实验数据进行定量研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applications in engineering science
Applications in engineering science Mechanical Engineering
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
68 days
期刊最新文献
Numerical simulation of open channel basaltic lava flow through topographical bends An experimental study on heat transfer using electrohydrodynamics (EHD) over a heated vertical plate. Lattice Boltzmann simulations of unsteady Bingham fluid flows Thermo-fluid performance of axially perforated multiple rectangular flow deflector-type baffle plate in an tubular heat exchanger H(div)-conforming and discontinuous Galerkin approach for Herschel–Bulkley flow with density-dependent viscosity and yield stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1