{"title":"Nitrous Oxide Distributions in the Oxygenated Water Column of the Sargasso Sea","authors":"Annaliese C. S. Meyer, J. Cullen, D. Grundle","doi":"10.1080/07055900.2022.2153325","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study presents dissolved nitrous oxide (N2O) concentrations in the water column at the Bermuda Atlantic Time-series Study (BATS) station and uses a subset of these measurements to estimate air-to-sea flux for four specific time points between September 2018 and June 2019. N2O concentrations at BATS were in the range of 4.0 nmol L−1–16.9 nmol L−1, with vertical profiles which were the mirror inverse of dissolved oxygen. Regardless of season, N2O concentration maxima were found within the oxygen minimum zone (OMZ). The highest maximum N2O values were observed in November and lowest in October. As the water column at BATS remains consistently at dissolved oxygen concentrations greater than 140 µmol L−1, and therefore aerobic, we assume that the bulk of N2O production occurs through nitrification. A nitrification source is supported by a correlation between excess N2O (ΔN2O) below the mixed layer, apparent oxygen utilization (AOU) and nitrate concentrations. We estimate a pooled average yield of 0.027% to 0.038% N2O from nitrification at BATS. Finally, estimates of air–sea exchange of N2O using regional average monthly wind speeds indicated that this region acts as a weak source or a sink of atmospheric N2O, and varies between months.","PeriodicalId":55434,"journal":{"name":"Atmosphere-Ocean","volume":"61 1","pages":"173 - 185"},"PeriodicalIF":1.6000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere-Ocean","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/07055900.2022.2153325","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT This study presents dissolved nitrous oxide (N2O) concentrations in the water column at the Bermuda Atlantic Time-series Study (BATS) station and uses a subset of these measurements to estimate air-to-sea flux for four specific time points between September 2018 and June 2019. N2O concentrations at BATS were in the range of 4.0 nmol L−1–16.9 nmol L−1, with vertical profiles which were the mirror inverse of dissolved oxygen. Regardless of season, N2O concentration maxima were found within the oxygen minimum zone (OMZ). The highest maximum N2O values were observed in November and lowest in October. As the water column at BATS remains consistently at dissolved oxygen concentrations greater than 140 µmol L−1, and therefore aerobic, we assume that the bulk of N2O production occurs through nitrification. A nitrification source is supported by a correlation between excess N2O (ΔN2O) below the mixed layer, apparent oxygen utilization (AOU) and nitrate concentrations. We estimate a pooled average yield of 0.027% to 0.038% N2O from nitrification at BATS. Finally, estimates of air–sea exchange of N2O using regional average monthly wind speeds indicated that this region acts as a weak source or a sink of atmospheric N2O, and varies between months.
期刊介绍:
Atmosphere-Ocean is the principal scientific journal of the Canadian Meteorological and Oceanographic Society (CMOS). It contains results of original research, survey articles, notes and comments on published papers in all fields of the atmospheric, oceanographic and hydrological sciences. Arctic, coastal and mid- to high-latitude regions are areas of particular interest. Applied or fundamental research contributions in English or French on the following topics are welcomed:
climate and climatology;
observation technology, remote sensing;
forecasting, modelling, numerical methods;
physics, dynamics, chemistry, biogeochemistry;
boundary layers, pollution, aerosols;
circulation, cloud physics, hydrology, air-sea interactions;
waves, ice, energy exchange and related environmental topics.