Xiashiyao Zhang, Qi Lou, Lili Wang, S. Min, Meng Zhao, Changyun Quan
{"title":"Immobilization of BMP-2-derived peptides on 3D-printed porous scaffolds for enhanced osteogenesis","authors":"Xiashiyao Zhang, Qi Lou, Lili Wang, S. Min, Meng Zhao, Changyun Quan","doi":"10.1088/1748-605X/ab4c78","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) printing technologies open up new perspectives for customizing the external shape and internal architecture of bone scaffolds. In this study, an oligopeptide (SSVPT, Ser-Ser-Val-Pro-Thr) derived from bone morphogenetic protein 2 was conjugated with a dopamine coating on a 3D-printed poly(lactic acid) (PLA) scaffold to enhance osteogenesis. Cell experiments in vitro showed that the scaffold was highly osteoconductive to the adhesion and proliferation of rat marrow mesenchymal stem cells (MSCs). In addition, RT-PCR analysis showed that the scaffold was able to promote the expression of osteogenesis-related genes, such as alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN) and osteopontin (OPN). Images of the micro-CT 3D reconstruction from the rat cranial bone defect model showed that bone regeneration patterns occurred from one side edge towards the center of the area implanted with the prepared biomimetic peptide hydrogels, demonstrating significantly accelerated bone regeneration. This work will provide a basis to explore the application potential of bioactive scaffolds further.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab4c78","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab4c78","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 12
Abstract
Three-dimensional (3D) printing technologies open up new perspectives for customizing the external shape and internal architecture of bone scaffolds. In this study, an oligopeptide (SSVPT, Ser-Ser-Val-Pro-Thr) derived from bone morphogenetic protein 2 was conjugated with a dopamine coating on a 3D-printed poly(lactic acid) (PLA) scaffold to enhance osteogenesis. Cell experiments in vitro showed that the scaffold was highly osteoconductive to the adhesion and proliferation of rat marrow mesenchymal stem cells (MSCs). In addition, RT-PCR analysis showed that the scaffold was able to promote the expression of osteogenesis-related genes, such as alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN) and osteopontin (OPN). Images of the micro-CT 3D reconstruction from the rat cranial bone defect model showed that bone regeneration patterns occurred from one side edge towards the center of the area implanted with the prepared biomimetic peptide hydrogels, demonstrating significantly accelerated bone regeneration. This work will provide a basis to explore the application potential of bioactive scaffolds further.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters