{"title":"A case study of grinding coarse 5 mm particles into sand grade particles less than 2.36 mm","authors":"A. Reed, L. Koroznikova, M. Khandelwal","doi":"10.15625/0866-7187/15701","DOIUrl":null,"url":null,"abstract":"This paper presents the viability study of utilising a rod or ball mill to grind a ‘5 mm grit’ to 100% passing 2.36 mm and fit in with a desired particle size analysis. The aim is to introduce this grit into the concrete grade sand produced at the Hanson owned Axedale Sand & Gravel quarry to reduce generated waste and improve the process efficiency. A ball mill and rod mill were used to grind the samples at an interval of 5 and 10 minutes. From the laboratory experimental analysis, it was found that a ball mill with 5 minutes grinding time in closed-circuit using a classifier to remove undersize and reintroduce oversize to the mill would be a viable option in an industrial setting. A Bond Ball Mill Grindability Test was undertaken to determine the grindability of the 5 mm grit, which served to determine the power (kWh/t) required to grind it to 100% passing 2.36 mm. The bond ball mill grindability test showed that the grit had a work index value of 17.66 kWh/t. This work index gives an actual work input of 13.54 kWh/t, meaning that for every ton of feed material introduced to the mill, 13.54 kWh of work input is required to grind it to 150 microns.","PeriodicalId":23639,"journal":{"name":"VIETNAM JOURNAL OF EARTH SCIENCES","volume":"43 1","pages":"56-69"},"PeriodicalIF":2.4000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VIETNAM JOURNAL OF EARTH SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0866-7187/15701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the viability study of utilising a rod or ball mill to grind a ‘5 mm grit’ to 100% passing 2.36 mm and fit in with a desired particle size analysis. The aim is to introduce this grit into the concrete grade sand produced at the Hanson owned Axedale Sand & Gravel quarry to reduce generated waste and improve the process efficiency. A ball mill and rod mill were used to grind the samples at an interval of 5 and 10 minutes. From the laboratory experimental analysis, it was found that a ball mill with 5 minutes grinding time in closed-circuit using a classifier to remove undersize and reintroduce oversize to the mill would be a viable option in an industrial setting. A Bond Ball Mill Grindability Test was undertaken to determine the grindability of the 5 mm grit, which served to determine the power (kWh/t) required to grind it to 100% passing 2.36 mm. The bond ball mill grindability test showed that the grit had a work index value of 17.66 kWh/t. This work index gives an actual work input of 13.54 kWh/t, meaning that for every ton of feed material introduced to the mill, 13.54 kWh of work input is required to grind it to 150 microns.