Dry powder coating in additive manufacturing

IF 2.5 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Frontiers in chemical engineering Pub Date : 2022-09-16 DOI:10.3389/fceng.2022.995221
Jochen Schmidt, W. Peukert
{"title":"Dry powder coating in additive manufacturing","authors":"Jochen Schmidt, W. Peukert","doi":"10.3389/fceng.2022.995221","DOIUrl":null,"url":null,"abstract":"Dry powder coating is used in many industries to tailor the bulk solid characteristics of cohesive powders. Within this paper, the state of the art of dry coating of feedstock materials for powder based additive manufacturing (AM) processes will be reviewed. The focus is on feedstock materials for powder bed fusion AM processes, such as powder bed fusion of polymers with a laser beam and powder bed fusion of metals with lasers or an electron beam. Powders of several microns to several ten microns in size are used and the feedstock’s bulk solid properties, especially the flowability and packing density are of immanent importance in different process steps in particular for powder dosing and spreading of powder layers onto the building area. All these properties can be tuned by dry particle coating. Moreover, possibilities to improve AM processability and to manipulate the resulting microstructure (c.f. grain refinement, dispersion strengthening) by adhering nanoparticles on the powders will be discussed. The effect of dry coating on the obtained powder properties along the whole AM process chain and the resulting part properties is assessed. Moreover, appropriate characterization methods for bulk solid properties of dry-coated AM powders are critically discussed.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in chemical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fceng.2022.995221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Dry powder coating is used in many industries to tailor the bulk solid characteristics of cohesive powders. Within this paper, the state of the art of dry coating of feedstock materials for powder based additive manufacturing (AM) processes will be reviewed. The focus is on feedstock materials for powder bed fusion AM processes, such as powder bed fusion of polymers with a laser beam and powder bed fusion of metals with lasers or an electron beam. Powders of several microns to several ten microns in size are used and the feedstock’s bulk solid properties, especially the flowability and packing density are of immanent importance in different process steps in particular for powder dosing and spreading of powder layers onto the building area. All these properties can be tuned by dry particle coating. Moreover, possibilities to improve AM processability and to manipulate the resulting microstructure (c.f. grain refinement, dispersion strengthening) by adhering nanoparticles on the powders will be discussed. The effect of dry coating on the obtained powder properties along the whole AM process chain and the resulting part properties is assessed. Moreover, appropriate characterization methods for bulk solid properties of dry-coated AM powders are critically discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造中的干粉涂料
干粉涂料在许多行业中被用于定制粘性粉末的整体固体特性。在本文中,将对粉末基增材制造(AM)工艺原料的干涂层技术进行综述。重点是粉末床熔融AM工艺的原料,例如用激光束进行聚合物的粉末床熔融,以及用激光或电子束进行金属的粉末床熔合。使用尺寸为几微米至几十微米的粉末,并且原料的整体固体性质,特别是流动性和填充密度在不同的工艺步骤中具有内在的重要性,特别是对于粉末配料和将粉末层铺展到建筑区域而言。所有这些特性都可以通过干颗粒涂层进行调节。此外,还将讨论通过将纳米颗粒粘附在粉末上来提高AM可加工性和操纵所得微观结构(如晶粒细化、分散强化)的可能性。评估了干涂层对整个AM工艺链上获得的粉末性能以及由此产生的零件性能的影响。此外,还对干涂层AM粉末体相固体性质的适当表征方法进行了严格的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Editorial: The role of agave as feedstock within a sustainable circular bioeconomy Title: waste to wealth: the power of food-waste anaerobic digestion integrated with lactic acid fermentation Brewers’ spent grain pretreatment optimisation to enhance enzymatic hydrolysis of whole slurry and resuspended pellet Review of the recent advances on the fabrication, modification and application of electrospun TiO2 and ZnO nanofibers for the treatment of organic pollutants in wastewater Receptors for the recognition and extraction of lithium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1