Steady-state Assessment of Hydraulic Potential at Water Scarce regions of Agniyar River Basin, India using GMS-MODFLOW

Q4 Engineering Disaster Advances Pub Date : 2023-04-15 DOI:10.25303/1605da038043
Sugam Verma, P. Parthiban, K. Ravikumar, I. Das, Ashutosh Das
{"title":"Steady-state Assessment of Hydraulic Potential at Water Scarce regions of Agniyar River Basin, India using GMS-MODFLOW","authors":"Sugam Verma, P. Parthiban, K. Ravikumar, I. Das, Ashutosh Das","doi":"10.25303/1605da038043","DOIUrl":null,"url":null,"abstract":"Although the Agniyar river basin, a segment of the Cauvery River basin, hosts a sizable agricultural community whose primary source of income is underground water supply, the area has been experiencing escalating water scarcity for decades. The present research work is carried out to address the lack of a research base in this region and to create a comprehensive groundwater baseline information system for studying the impacts of natural and anthropogenic activities, using GMS MODFLOW with Monte-Carlo simulation-based groundwater level dataset. The model, thus developed, can be calibrated with contemporaneous recharge and discharge data regularly so that the output may be used to make policy decisions in sustainable exploration of groundwater resources. The model also provides the locations of subsurface flood cells which can be potential water harvesting sites. Besides, the present modelling framework can be extended to other water-scarce regions as well.","PeriodicalId":50576,"journal":{"name":"Disaster Advances","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disaster Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25303/1605da038043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Although the Agniyar river basin, a segment of the Cauvery River basin, hosts a sizable agricultural community whose primary source of income is underground water supply, the area has been experiencing escalating water scarcity for decades. The present research work is carried out to address the lack of a research base in this region and to create a comprehensive groundwater baseline information system for studying the impacts of natural and anthropogenic activities, using GMS MODFLOW with Monte-Carlo simulation-based groundwater level dataset. The model, thus developed, can be calibrated with contemporaneous recharge and discharge data regularly so that the output may be used to make policy decisions in sustainable exploration of groundwater resources. The model also provides the locations of subsurface flood cells which can be potential water harvesting sites. Besides, the present modelling framework can be extended to other water-scarce regions as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用GMS-MODFLOW对印度Agniyar河流域缺水地区水力潜力的稳态评估
尽管Agniyar河流域是Cauvery河流域的一部分,拥有一个庞大的农业社区,其主要收入来源是地下水供应,但几十年来,该地区的水资源短缺一直在加剧。本研究工作旨在解决该地区缺乏研究基地的问题,并利用GMS MODFLOW和基于蒙特卡洛模拟的地下水位数据集,创建一个用于研究自然和人为活动影响的综合地下水基线信息系统。由此开发的模型可以定期用同期的补给和排泄数据进行校准,以便将输出用于地下水资源可持续勘探的政策决策。该模型还提供了地下洪水单元的位置,这些单元可以是潜在的集水地点。此外,目前的建模框架也可以扩展到其他缺水地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Disaster Advances
Disaster Advances 地学-地球科学综合
CiteScore
0.70
自引率
0.00%
发文量
57
审稿时长
3.5 months
期刊介绍: Information not localized
期刊最新文献
Disaster Management and Landslide Risk Reduction Strategies in The Gebog Sub-District of Kudus Regency, Central Java, Indonesia Classification of Ionospheric Scintillations during high Solar Activity and Geomagnetic Storm over Visakhapatnam Region using Machine Learning Approach Remote Sensing based Early Warning Systems for Detection and Assessment of Landslides: A Case Study of Himachal Pradesh, India Improvement awareness of disaster management using virtual reality-based tsunami disaster drills Long-term Impact Assessment of Disasters through Predictive Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1