{"title":"Fabrication and characterization of Al/Ta thin films as metal junctions for solar cell applications","authors":"Kamil Monga , Larak Labbafi , Harshita Trivedi , Zohreh Ghorannevis , Avanish Singh Parmar , Shilpi Chaudhary","doi":"10.1016/j.mlblux.2022.100174","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, the effect of deposition time (10 min, 20 min, and 30 min) on the structural, morphological, and electrical properties of Al/Ta thin films has been investigated. The XRD and microscopy results revealed that the thin films exhibit a bcc structure, with a strong (1<!--> <!-->1<!--> <!-->0) preferred orientation and followed a columnar growth with grain sizes lower than 100 nm. Thin film with 20-min deposition time exhibits less average roughness and better morphology than 10-min and 30-min. Further, the average resistance was smallest for thin films with 20-min of deposition time along with the optical reflectance between 50 and 85% in wavelength region of 400–1000 nm. The Al/Ta thin film can be employed as an excellent back-contact material for thinfilm solar cells due to its improved crystallinity, reflectance, and lower resistivity.</p></div>","PeriodicalId":18245,"journal":{"name":"Materials Letters: X","volume":"17 ","pages":"Article 100174"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590150822000540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, the effect of deposition time (10 min, 20 min, and 30 min) on the structural, morphological, and electrical properties of Al/Ta thin films has been investigated. The XRD and microscopy results revealed that the thin films exhibit a bcc structure, with a strong (1 1 0) preferred orientation and followed a columnar growth with grain sizes lower than 100 nm. Thin film with 20-min deposition time exhibits less average roughness and better morphology than 10-min and 30-min. Further, the average resistance was smallest for thin films with 20-min of deposition time along with the optical reflectance between 50 and 85% in wavelength region of 400–1000 nm. The Al/Ta thin film can be employed as an excellent back-contact material for thinfilm solar cells due to its improved crystallinity, reflectance, and lower resistivity.