Salinity tolerance determination in four sunflower (Helianthus annuus L.) hybrids using yield parameters and principal components analysis model

IF 3.5 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Annals of Agricultural Science Pub Date : 2022-12-01 DOI:10.1016/j.aoas.2022.12.005
Gabriel Céccoli , Sergio Andrés Granados Ortiz , Melina Soledad Buttarelli , María Laura Pisarello , Fernando Felipe Muñoz , Lucas Damián Daurelio , Carlos Alberto Bouzo , Elisa Soledad Panigo , Adrián Alejandro Perez
{"title":"Salinity tolerance determination in four sunflower (Helianthus annuus L.) hybrids using yield parameters and principal components analysis model","authors":"Gabriel Céccoli ,&nbsp;Sergio Andrés Granados Ortiz ,&nbsp;Melina Soledad Buttarelli ,&nbsp;María Laura Pisarello ,&nbsp;Fernando Felipe Muñoz ,&nbsp;Lucas Damián Daurelio ,&nbsp;Carlos Alberto Bouzo ,&nbsp;Elisa Soledad Panigo ,&nbsp;Adrián Alejandro Perez","doi":"10.1016/j.aoas.2022.12.005","DOIUrl":null,"url":null,"abstract":"<div><p>Globally, around 800 million hectares are affected by salinity. This abiotic stress causes plant growth inhibition, disruptions in physiological processes in plant cells, and yield losses in many crops. Sunflower is the third-most oilseed crop globally produced, and it is considered moderately tolerant to salinity. There are few studies about the genotypic variability existing in sunflower for responses to salinity, especially the changes in yield and oil content and quality under salinity. The present work aimed to study the effects of salinity on achene yield in four sunflower genotypes and their components and on the oil content and quality and their relationships. Four sunflower hybrids (ACA885, TRITON MAX, SRM769 and SRM779) were grown at 130 mM NaCl irrigation solution under controlled environmental conditions. The achene yield, the yield components, and the content and oil quality were determined. Based on the four studied genotypes, salinity decreased achene yield by 75.1 %. SRM779CL had a lower achene yield reduction by salinity. Yield component that most explained this tolerance was the number of achenes per plant. SRM779CL was the hybrid with the highest oil percentage loss. Contrarily, salinity increased the oil content in ACA885. Salinity decreased the ratio between oleic (18:1) and linoleic acid (18:2) in all genotypes. Therefore, salt stress increased the percentage of unsaturations in the four genotypes examined in this work. Finally, considering the 12 parameters measured, principal components analysis could determine that SRM779CL showed the best performance under control conditions while ACA885 was the most tolerant under salinity.</p></div>","PeriodicalId":54198,"journal":{"name":"Annals of Agricultural Science","volume":"67 2","pages":"Pages 211-219"},"PeriodicalIF":3.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0570178322000306/pdfft?md5=2fa75db7d34e024dc20393efd59bd1ae&pid=1-s2.0-S0570178322000306-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Agricultural Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0570178322000306","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Globally, around 800 million hectares are affected by salinity. This abiotic stress causes plant growth inhibition, disruptions in physiological processes in plant cells, and yield losses in many crops. Sunflower is the third-most oilseed crop globally produced, and it is considered moderately tolerant to salinity. There are few studies about the genotypic variability existing in sunflower for responses to salinity, especially the changes in yield and oil content and quality under salinity. The present work aimed to study the effects of salinity on achene yield in four sunflower genotypes and their components and on the oil content and quality and their relationships. Four sunflower hybrids (ACA885, TRITON MAX, SRM769 and SRM779) were grown at 130 mM NaCl irrigation solution under controlled environmental conditions. The achene yield, the yield components, and the content and oil quality were determined. Based on the four studied genotypes, salinity decreased achene yield by 75.1 %. SRM779CL had a lower achene yield reduction by salinity. Yield component that most explained this tolerance was the number of achenes per plant. SRM779CL was the hybrid with the highest oil percentage loss. Contrarily, salinity increased the oil content in ACA885. Salinity decreased the ratio between oleic (18:1) and linoleic acid (18:2) in all genotypes. Therefore, salt stress increased the percentage of unsaturations in the four genotypes examined in this work. Finally, considering the 12 parameters measured, principal components analysis could determine that SRM779CL showed the best performance under control conditions while ACA885 was the most tolerant under salinity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用产量参数和主成分分析模型测定4个向日葵杂交种的耐盐性
全球约有8亿公顷土地受到盐碱化影响。这种非生物胁迫导致植物生长抑制,破坏植物细胞的生理过程,并导致许多作物减产。向日葵是全球产量第三大的油籽作物,它被认为是适度耐盐的。目前关于向日葵对盐胁迫的基因型变异,特别是盐胁迫下产量、含油量和品质变化的研究较少。本研究旨在研究盐度对4种向日葵基因型瘦果产量及其组成的影响,以及对含油量和品质的影响及其相互关系。以ACA885、TRITON MAX、SRM769和SRM779 4个向日葵杂交种为材料,在130 mM NaCl灌溉条件下生长。测定了瘦果的产率、产率组成、含量和油质。在四种基因型中,盐度降低瘦果产量75.1%。盐度对SRM779CL瘦果产量的影响较小。最能解释这种耐受性的产量成分是每株瘦果的数量。SRM779CL是含油损失率最高的杂交种。相反,盐度增加了ACA885的含油量。盐度降低了所有基因型中油酸(18:1)和亚油酸(18:2)的比值。因此,盐胁迫增加了本研究中检测的四种基因型的不饱和百分比。最后,综合12个测定参数,主成分分析表明,SRM779CL在对照条件下表现最佳,ACA885在盐度条件下表现最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annals of Agricultural Science
Annals of Agricultural Science AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
12.60
自引率
0.00%
发文量
18
审稿时长
33 days
期刊介绍: Annals of Agricultural Sciences (AOAS) is the official journal of Faculty of Agriculture, Ain Shams University. AOAS is an open access peer-reviewed journal publishing original research articles and review articles on experimental and modelling research at laboratory, field, farm, landscape, and industrial levels. AOAS aims to maximize the quality of the agricultural sector across the globe with emphasis on the Arabian countries by focusing on publishing the high-quality applicable researches, in addition to the new methods and frontiers leading to maximizing the quality and quantity of both plant and animal yield and final products.
期刊最新文献
Probiotic potential of lactic acid bacteria isolated from honeybees stomach: Functional and technological insights Combining wide seedling strip planting with a higher plant density results in greater yield gains in winter wheat Appropriate application of organic fertilizer enhanced yield, microelement content, and quality of maize grain under a rotation system 2-Chloro-6-(trichloromethyl) pyridine stabilized early japonica rice yield by increasing nitrogen uptake and utilization under reduced nitrogen rates Optimizing rice yield and phosphorus use efficiency through root morphology and soil phosphorus management in agricultural soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1