{"title":"Through Plane Networked Graphene Oxide/Polyester Hybrid Thermal Interface Material for Heat Management Applications","authors":"Junaid Khan, M. Jaafar","doi":"10.1080/15567265.2022.2125857","DOIUrl":null,"url":null,"abstract":"ABSTRACT The role of electronic devices in our lives is increasing rapidly, with more research focusing on miniaturization, creating more demand for thermal interface materials (TIM). Grease-based TIM presently available have good thermal conductivity values, but issues such as contamination, pump-out, and an additional curing step are observed. Fibrous textile substrates are soft and flexible, making them suitable for occupying the asperities between the heat sink and heat-producing devices. However, they are insulating in nature and can be made conductive using conductive fillers such as graphene oxide (GO). In this article, a networked through-plane thermally conductive TIM using the cutting waste of polyester and GO was fabricated. The methodology involved functionalizing the PET substrate and studying its interaction with GO. A networked GO/PET, (N-GOPET) hybrid TIM was fabricated from waste PET with good through-plane heat conduction performance, softness, and cuttability as a promising replacement for grease-based TIM.","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"26 1","pages":"188 - 197"},"PeriodicalIF":2.7000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2022.2125857","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT The role of electronic devices in our lives is increasing rapidly, with more research focusing on miniaturization, creating more demand for thermal interface materials (TIM). Grease-based TIM presently available have good thermal conductivity values, but issues such as contamination, pump-out, and an additional curing step are observed. Fibrous textile substrates are soft and flexible, making them suitable for occupying the asperities between the heat sink and heat-producing devices. However, they are insulating in nature and can be made conductive using conductive fillers such as graphene oxide (GO). In this article, a networked through-plane thermally conductive TIM using the cutting waste of polyester and GO was fabricated. The methodology involved functionalizing the PET substrate and studying its interaction with GO. A networked GO/PET, (N-GOPET) hybrid TIM was fabricated from waste PET with good through-plane heat conduction performance, softness, and cuttability as a promising replacement for grease-based TIM.
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.