An insight review on formation damage induced by drilling fluids

IF 4.9 3区 工程技术 Q1 ENGINEERING, CHEMICAL Reviews in Chemical Engineering Pub Date : 2022-01-26 DOI:10.1515/revce-2020-0106
Mojtaba Kalhor Mohammadi, S. Riahi, E. Boek
{"title":"An insight review on formation damage induced by drilling fluids","authors":"Mojtaba Kalhor Mohammadi, S. Riahi, E. Boek","doi":"10.1515/revce-2020-0106","DOIUrl":null,"url":null,"abstract":"Abstract Formation damage is an essential part of drilling and production evaluation, which has a significant effect on well productivity and economics. Drilling fluids are significant sources of formation damage by different mechanisms. This article reviews the research works published during the past 30 years on formation damage associated with drilling fluids, including mechanical damage, chemical damage, and interaction with reservoir rock and fluids. Different filtration techniques, fines migration, and invasion models are discussed based on past studies and recent advancements. Laboratory experiments, methodology, and various aspects of evaluation are considered for further study. Despite presenting different authors’ views and experiences in this area, there is no integrated approach to evaluate formation damage caused by drilling fluids. Finally, the authors analyze the knowledge gap and conclude that a methodology must be designed to improve drilling fluids to prevent formation damage. Recent advances in the area of nanotechnology show promising alternatives for new methods to prevent formation damage.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2020-0106","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Formation damage is an essential part of drilling and production evaluation, which has a significant effect on well productivity and economics. Drilling fluids are significant sources of formation damage by different mechanisms. This article reviews the research works published during the past 30 years on formation damage associated with drilling fluids, including mechanical damage, chemical damage, and interaction with reservoir rock and fluids. Different filtration techniques, fines migration, and invasion models are discussed based on past studies and recent advancements. Laboratory experiments, methodology, and various aspects of evaluation are considered for further study. Despite presenting different authors’ views and experiences in this area, there is no integrated approach to evaluate formation damage caused by drilling fluids. Finally, the authors analyze the knowledge gap and conclude that a methodology must be designed to improve drilling fluids to prevent formation damage. Recent advances in the area of nanotechnology show promising alternatives for new methods to prevent formation damage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钻井液致地层损害研究进展
地层损害是钻井和生产评价的重要组成部分,对油井产能和经济效益有重要影响。钻井液是造成地层损害的重要原因。本文综述了近30年来发表的与钻井液有关的地层损害研究成果,包括机械损害、化学损害以及与储层岩石和流体的相互作用。根据过去的研究和最新进展,讨论了不同的过滤技术、细粒迁移和入侵模型。实验室实验,方法和评价的各个方面被认为是进一步研究。尽管在这一领域提出了不同的观点和经验,但目前还没有一种综合的方法来评估钻井液对地层的损害。最后,作者分析了知识差距,并得出结论,必须设计一种方法来改进钻井液,以防止地层损害。纳米技术领域的最新进展为防止地层损害的新方法提供了有希望的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reviews in Chemical Engineering
Reviews in Chemical Engineering 工程技术-工程:化工
CiteScore
12.30
自引率
0.00%
发文量
37
审稿时长
6 months
期刊介绍: Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.
期刊最新文献
Lithium–sulfur batteries beyond lithium-ion counterparts: reasonable substituting challenges, current research focus, binding critical role, and cathode designing A review of confined impinging jet reactor (CIJR) with a perspective of mRNA-LNP vaccine production Metal nanoparticles loaded polyurethane nano-composites and their catalytic/antimicrobial applications: a critical review Analysis of the state of the art technologies for the utilization and processing of associated petroleum gas into valuable chemical products A decade development of lipase catalysed synthesis of acylglycerols using reactors: a systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1