{"title":"Reduced creeping bentgrass fairway reflectance following synthetic colorant application","authors":"Nathaniel L. Leiby, Maxim J. Schlossberg","doi":"10.1002/ael2.20064","DOIUrl":null,"url":null,"abstract":"<p>Repeated measures using multispectral radiometry resolutely quantify canopy attributes of identical turfgrass cultivars under similar management. Concern regarding multispectral radiometric characterization of turfgrass canopies <24 h following synthetic phthalocyanine colorant application has been affirmed and is accordingly now avoided; yet explicit guidance on subsequent employ, at time(s) > 24-h postapplication, is lacking. Our objective assessed how petroleum-derived spray oil (PDSO) and synthetic Cu II phthalocyanine colorant (CPC) combination product influences creeping bentgrass (<i>Agrostis stolonifera</i> L.) reflectance up to 10 d following application. A maintained fairway received semimonthly 9.76 kg ha<sup>–1</sup> soluble N treatments alone or in combination with 27 L PDSO+CPC ha<sup>–1</sup>. Treatment by PDSO+CPC increased mean shoot growth (kg ha<sup>–1</sup>) and dark green color index (DGCI) calculated by visible waveband reflectance. Yet reduced far red and near infrared reflectance from PDSO+CPC treated plots artificially deflated mean normalized differential vegetative indices. Cautious interpretation of vegetative indices relying on 710-to-810-nm canopy reflectance is encouraged when evaluating fairways treated by PDSO and Cu II phthalocyanine combination product(s).</p>","PeriodicalId":48502,"journal":{"name":"Agricultural & Environmental Letters","volume":"7 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.20064","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural & Environmental Letters","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20064","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Repeated measures using multispectral radiometry resolutely quantify canopy attributes of identical turfgrass cultivars under similar management. Concern regarding multispectral radiometric characterization of turfgrass canopies <24 h following synthetic phthalocyanine colorant application has been affirmed and is accordingly now avoided; yet explicit guidance on subsequent employ, at time(s) > 24-h postapplication, is lacking. Our objective assessed how petroleum-derived spray oil (PDSO) and synthetic Cu II phthalocyanine colorant (CPC) combination product influences creeping bentgrass (Agrostis stolonifera L.) reflectance up to 10 d following application. A maintained fairway received semimonthly 9.76 kg ha–1 soluble N treatments alone or in combination with 27 L PDSO+CPC ha–1. Treatment by PDSO+CPC increased mean shoot growth (kg ha–1) and dark green color index (DGCI) calculated by visible waveband reflectance. Yet reduced far red and near infrared reflectance from PDSO+CPC treated plots artificially deflated mean normalized differential vegetative indices. Cautious interpretation of vegetative indices relying on 710-to-810-nm canopy reflectance is encouraged when evaluating fairways treated by PDSO and Cu II phthalocyanine combination product(s).