A review on methods for predicting miRNA–mRNA regulatory modules

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Integrative Bioinformatics Pub Date : 2022-04-01 DOI:10.1515/jib-2020-0048
Madhumita Madhumita, Sushmita Paul
{"title":"A review on methods for predicting miRNA–mRNA regulatory modules","authors":"Madhumita Madhumita, Sushmita Paul","doi":"10.1515/jib-2020-0048","DOIUrl":null,"url":null,"abstract":"Abstract Identification of complex interactions between miRNAs and mRNAs in a regulatory network helps better understand the underlying biological processes. Previously, identification of these interactions was based on sequence-based predicted target binding information. With the advancement in high-throughput omics technologies, miRNA and mRNA expression for the same set of samples are available. This helps develop more efficient and flexible approaches that work by integrating miRNA and mRNA expression profiles with target binding information. Since these integrative approaches of miRNA–mRNA regulatory modules (MRMs) detection is sufficiently able to capture the minute biological details, 26 such algorithms/methods/tools for MRMs identification are comprehensively reviewed in this article. The study covers the significant features underlying every method. Therefore, the methods are classified into eight groups based on mathematical approaches to understand their working and suitability for one’s study. An algorithm could be selected based on the available information with the users and the biological question under investigation.","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2020-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Identification of complex interactions between miRNAs and mRNAs in a regulatory network helps better understand the underlying biological processes. Previously, identification of these interactions was based on sequence-based predicted target binding information. With the advancement in high-throughput omics technologies, miRNA and mRNA expression for the same set of samples are available. This helps develop more efficient and flexible approaches that work by integrating miRNA and mRNA expression profiles with target binding information. Since these integrative approaches of miRNA–mRNA regulatory modules (MRMs) detection is sufficiently able to capture the minute biological details, 26 such algorithms/methods/tools for MRMs identification are comprehensively reviewed in this article. The study covers the significant features underlying every method. Therefore, the methods are classified into eight groups based on mathematical approaches to understand their working and suitability for one’s study. An algorithm could be selected based on the available information with the users and the biological question under investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
miRNA-mRNA调控模块预测方法综述
摘要在调控网络中识别miRNA和mRNA之间的复杂相互作用有助于更好地理解潜在的生物学过程。以前,这些相互作用的鉴定是基于基于序列的预测靶标结合信息。随着高通量组学技术的进步,同一组样品的miRNA和mRNA表达是可用的。这有助于开发更有效和灵活的方法,通过整合miRNA和mRNA表达谱与靶结合信息来发挥作用。由于这些miRNA-mRNA调节模块(MRM)检测的综合方法足以捕捉微小的生物学细节,本文对26种用于MRM识别的算法/方法/工具进行了全面综述。这项研究涵盖了每种方法背后的重要特征。因此,根据数学方法将这些方法分为八组,以了解它们的有效性和适用性。可以根据用户的可用信息和正在调查的生物学问题来选择算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
期刊最新文献
MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction. Leonhard Med, a trusted research environment for processing sensitive research data. Exploring animal behaviour multilayer networks in immersive environments - a conceptual framework. Inferences on the evolution of the ascorbic acid synthesis pathway in insects using Phylogenetic Tree Collapser (PTC), a tool for the automated collapsing of phylogenetic trees using taxonomic information. Specifications of standards in systems and synthetic biology: status, developments, and tools in 2024.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1