Speaker Trait Enhancement for Cochlear Implant Users: A Case Study for Speaker Emotion Perception

Avamarie Brueggeman, J. Hansen
{"title":"Speaker Trait Enhancement for Cochlear Implant Users: A Case Study for Speaker Emotion Perception","authors":"Avamarie Brueggeman, J. Hansen","doi":"10.21437/interspeech.2022-10951","DOIUrl":null,"url":null,"abstract":"Despite significant progress in areas such as speech recognition, cochlear implant users still experience challenges related to identifying various speaker traits such as gender, age, emotion, accent, etc. In this study, we focus on emotion as one trait. We propose the use of emotion intensity conversion to perceptually enhance emotional speech with the goal of improving speech emotion recognition for cochlear implant users. To this end, we utilize a parallel speech dataset containing emotion and intensity labels to perform conversion from normal to high intensity emotional speech. A non-negative matrix factorization method is integrated to perform emotion intensity conversion via spectral mapping. We evaluate our emotional speech enhancement using a support vector machine model for emotion recognition. In addition, we perform an emotional speech recognition listener experiment with normal hearing listeners using vocoded audio. It is suggested that such enhancement will benefit speaker trait perception for cochlear implant users.","PeriodicalId":73500,"journal":{"name":"Interspeech","volume":"1 1","pages":"2268-2272"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interspeech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/interspeech.2022-10951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant progress in areas such as speech recognition, cochlear implant users still experience challenges related to identifying various speaker traits such as gender, age, emotion, accent, etc. In this study, we focus on emotion as one trait. We propose the use of emotion intensity conversion to perceptually enhance emotional speech with the goal of improving speech emotion recognition for cochlear implant users. To this end, we utilize a parallel speech dataset containing emotion and intensity labels to perform conversion from normal to high intensity emotional speech. A non-negative matrix factorization method is integrated to perform emotion intensity conversion via spectral mapping. We evaluate our emotional speech enhancement using a support vector machine model for emotion recognition. In addition, we perform an emotional speech recognition listener experiment with normal hearing listeners using vocoded audio. It is suggested that such enhancement will benefit speaker trait perception for cochlear implant users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工耳蜗使用者的说话者特质增强:以说话者情绪知觉为例
尽管在语音识别等领域取得了重大进展,但人工耳蜗使用者仍然面临着识别不同说话者特征(如性别、年龄、情感、口音等)的挑战。在这项研究中,我们把情感作为一种特征来关注。我们提出使用情绪强度转换来感知增强情绪语音,目的是提高人工耳蜗使用者的语音情绪识别。为此,我们利用一个包含情绪和强度标签的并行语音数据集来完成从正常到高强度情绪语音的转换。结合非负矩阵分解方法,通过谱映射实现情感强度转换。我们使用情感识别的支持向量机模型来评估我们的情感语音增强。此外,我们使用语音编码音频对正常听力的听众进行了情感语音识别听众实验。结果表明,这种增强有利于人工耳蜗使用者对说话人特征的感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contrastive Learning Approach for Assessment of Phonological Precision in Patients with Tongue Cancer Using MRI Data. Remote Assessment for ALS using Multimodal Dialog Agents: Data Quality, Feasibility and Task Compliance. Pronunciation modeling of foreign words for Mandarin ASR by considering the effect of language transfer VCSE: Time-Domain Visual-Contextual Speaker Extraction Network Induce Spoken Dialog Intents via Deep Unsupervised Context Contrastive Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1