Optimization of Temperature Field by Differentiating Number of Circumferential Control Zones in Local Post Weld Heat Treatment on 9%Cr Heat-Resistant Steel Pipe
{"title":"Optimization of Temperature Field by Differentiating Number of Circumferential Control Zones in Local Post Weld Heat Treatment on 9%Cr Heat-Resistant Steel Pipe","authors":"Xue Wang, Da Zhang, Fan Zhou, Qiang Xu","doi":"10.1115/1.4055524","DOIUrl":null,"url":null,"abstract":"\n This paper reports the optimal use of control zones to achieve required uniformity of temperature distribution in local post weld heat treatment of welds in 9% Cr heat-resistant large pipe system. In this research, local PWHT tests on temperature distribution with different control zones were carried out on 9%Cr steel pipes (OD710 mm × 35 mm and OD575 mm × 35 mm), which was further used for the development of the thermal analysis of the post weld heat treatment model via ABAQUS. The research results revealed:1) the effect of number of control zone on the uniformity of temperature distribution;2) the effect of size of pipe diameter on the circumferential temperature and the through-thickness temperature gradients. This article discusses the possible reasons for the temperature difference at various positions of the pipe caused by the air flow inside the pipe with different control zones. Based on the obtained results, a practical method was designed for the selection the number of circumferential control zones on 9%Cr heat-resistant steel pipeline according to the required degree of temperature distribution uniformity. This paper contributes to the specific knowledge and the generic methodology.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055524","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports the optimal use of control zones to achieve required uniformity of temperature distribution in local post weld heat treatment of welds in 9% Cr heat-resistant large pipe system. In this research, local PWHT tests on temperature distribution with different control zones were carried out on 9%Cr steel pipes (OD710 mm × 35 mm and OD575 mm × 35 mm), which was further used for the development of the thermal analysis of the post weld heat treatment model via ABAQUS. The research results revealed:1) the effect of number of control zone on the uniformity of temperature distribution;2) the effect of size of pipe diameter on the circumferential temperature and the through-thickness temperature gradients. This article discusses the possible reasons for the temperature difference at various positions of the pipe caused by the air flow inside the pipe with different control zones. Based on the obtained results, a practical method was designed for the selection the number of circumferential control zones on 9%Cr heat-resistant steel pipeline according to the required degree of temperature distribution uniformity. This paper contributes to the specific knowledge and the generic methodology.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.