{"title":"Counting sheaves on Calabi–Yau 4-folds, I","authors":"Jeongseok Oh, Richard P. Thomas","doi":"10.1215/00127094-2022-0059","DOIUrl":null,"url":null,"abstract":"Borisov-Joyce constructed a real virtual cycle on compact moduli spaces of stable sheaves on Calabi-Yau 4-folds, using derived differential geometry. We construct an algebraic virtual cycle. A key step is a localisation of Edidin-Graham's square root Euler class for $SO(r,\\mathbb C)$ bundles to the zero locus of an isotropic section, or to the support of an isotropic cone. We prove a torus localisation formula, making the invariants computable and extending them to the noncompact case when the fixed locus is compact. We give a $K$-theoretic refinement by defining $K$-theoretic square root Euler classes and their localised versions. In a sequel we prove our invariants reproduce those of Borisov-Joyce.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0059","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 33
Abstract
Borisov-Joyce constructed a real virtual cycle on compact moduli spaces of stable sheaves on Calabi-Yau 4-folds, using derived differential geometry. We construct an algebraic virtual cycle. A key step is a localisation of Edidin-Graham's square root Euler class for $SO(r,\mathbb C)$ bundles to the zero locus of an isotropic section, or to the support of an isotropic cone. We prove a torus localisation formula, making the invariants computable and extending them to the noncompact case when the fixed locus is compact. We give a $K$-theoretic refinement by defining $K$-theoretic square root Euler classes and their localised versions. In a sequel we prove our invariants reproduce those of Borisov-Joyce.