Hybrid electrospun scaffolds based on polylactic acid/ PAMAM dendrimer/gemini surfactant for enhancement of synergistic antibacterial ability for biomedical application

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical materials Pub Date : 2022-04-29 DOI:10.1088/1748-605X/ac6bd7
Rasool Shabanloo, S. Akbari, M. Mirsalehi
{"title":"Hybrid electrospun scaffolds based on polylactic acid/ PAMAM dendrimer/gemini surfactant for enhancement of synergistic antibacterial ability for biomedical application","authors":"Rasool Shabanloo, S. Akbari, M. Mirsalehi","doi":"10.1088/1748-605X/ac6bd7","DOIUrl":null,"url":null,"abstract":"Hybrid electrospun scaffolds based on poly (L-lactic acid) (PLLA)/poly (amidoamine) (PAMAM-G2) dendrimer/gemini surfactant were fabricated for the enhancement of synergistic antibacterial activities. The second generation of poly (amidoamine) (PAMAM-G2) and cationic gemini surfactant were utilized to functionalize the optimum electrospun scaffolds. The gelatination process was utilized to improve the wettability of PLLA scaffolds to extend cell attachment and cell proliferation. PLLA nanofibrous scaffolds were characterized by energy dispersion x-ray, scanning electron microscopy images, mechanical properties, water contact angle, Fourier transform infrared spectroscopy, zeta potential and antibacterial assessment. In vitro cell biocompatibility was evaluated by 3-(4, 5- dimethylthiazoyl-2-yl)-2, 5-diphenyltetrazolium bromide assay and morphology of PC-12 cells cultured on hybrid nanofibrous scaffolds and gelatinized ones. The results indicated that the optimum scaffolds could successfully modify the characteristics of PLLA scaffolds leading to much more appropriate physical and chemical properties. In addition, gelatinized nanofibrous scaffolds reveal more wettability enhancing cell attachment and proliferation. Furthermore, using poly (amidoamine) (PAMAM-G2) and gemini surfactant reveals synergetic antibacterial activity due to the competition between both cationic groups of PAMAM and gemini surfactant. Finally, improved cell adhesion and cell viability on modified scaffolds were confirmed. These favorable properties give a chance for these scaffolds to be used in a wide variety of biomedical applications.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ac6bd7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Hybrid electrospun scaffolds based on poly (L-lactic acid) (PLLA)/poly (amidoamine) (PAMAM-G2) dendrimer/gemini surfactant were fabricated for the enhancement of synergistic antibacterial activities. The second generation of poly (amidoamine) (PAMAM-G2) and cationic gemini surfactant were utilized to functionalize the optimum electrospun scaffolds. The gelatination process was utilized to improve the wettability of PLLA scaffolds to extend cell attachment and cell proliferation. PLLA nanofibrous scaffolds were characterized by energy dispersion x-ray, scanning electron microscopy images, mechanical properties, water contact angle, Fourier transform infrared spectroscopy, zeta potential and antibacterial assessment. In vitro cell biocompatibility was evaluated by 3-(4, 5- dimethylthiazoyl-2-yl)-2, 5-diphenyltetrazolium bromide assay and morphology of PC-12 cells cultured on hybrid nanofibrous scaffolds and gelatinized ones. The results indicated that the optimum scaffolds could successfully modify the characteristics of PLLA scaffolds leading to much more appropriate physical and chemical properties. In addition, gelatinized nanofibrous scaffolds reveal more wettability enhancing cell attachment and proliferation. Furthermore, using poly (amidoamine) (PAMAM-G2) and gemini surfactant reveals synergetic antibacterial activity due to the competition between both cationic groups of PAMAM and gemini surfactant. Finally, improved cell adhesion and cell viability on modified scaffolds were confirmed. These favorable properties give a chance for these scaffolds to be used in a wide variety of biomedical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚乳酸/PAMAM树状大分子/双子表面活性剂复合电纺支架增强协同抗菌能力的生物医学应用
制备了基于聚L-乳酸(PLLA)/聚氨基胺(PAMAM-G2)树状大分子/双子表面活性剂的混合电纺支架,以增强协同抗菌活性。利用第二代聚氨基胺(PAMAM-G2)和阳离子双子表面活性剂对最佳的电纺支架进行了功能化。凝胶化过程用于改善PLLA支架的润湿性,以延长细胞附着和细胞增殖。通过能量分散x射线、扫描电子显微镜图像、力学性能、水接触角、傅立叶变换红外光谱、ζ电位和抗菌评价对PLLA纳米纤维支架进行了表征。通过3-(4,5-二甲基噻唑基-2-基)-2,5-二苯基四唑溴化测定法和在混合纳米纤维支架和凝胶支架上培养的PC-12细胞的形态来评估体外细胞生物相容性。结果表明,优化的支架可以成功地改变PLLA支架的特性,从而获得更合适的物理和化学性能。此外,凝胶化的纳米纤维支架显示出更多的润湿性,增强了细胞的附着和增殖。此外,由于PAMAM和双子表面活性剂的两个阳离子基团之间的竞争,使用聚氨基胺(PAMAM-G2)和双子表面表面活性剂显示出协同抗菌活性。最后,证实了在修饰的支架上细胞粘附性和细胞活力的改善。这些有利的性质为这些支架在各种生物医学应用中的应用提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
期刊最新文献
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1