Distributed Model Predictive Contouring Control for Real-Time Multi-Robot Motion Planning

Jianbin Xin;Yaoguang Qu;Fangfang Zhang;Rudy Negenborn
{"title":"Distributed Model Predictive Contouring Control for Real-Time Multi-Robot Motion Planning","authors":"Jianbin Xin;Yaoguang Qu;Fangfang Zhang;Rudy Negenborn","doi":"10.23919/CSMS.2022.0017","DOIUrl":null,"url":null,"abstract":"Existing motion planning algorithms for multi-robot systems must be improved to address poor coordination and increase low real-time performance. This paper proposes a new distributed real-time motion planning method for a multi-robot system using Model Predictive Contouring Control (MPCC). MPCC allows separating the tracking accuracy and productivity, to improve productivity better than the traditional Model Predictive Control (MPC) which follows a time-dependent reference. In the proposed distributed MPCC, each robot exchanges the predicted paths of the other robots and generates the collision-free motion in a parallel manner. The proposed distributed MPCC method is tested in industrial operation scenarios in the robot simulation platform Gazebo. The simulation results show that the proposed distributed MPCC method realizes real-time multi-robot motion planning and performs better than three commonly-used planning methods (dynamic window approach, MPC, and prioritized planning).","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":"2 4","pages":"273-287"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/9420428/10004846/10004912.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/10004912/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing motion planning algorithms for multi-robot systems must be improved to address poor coordination and increase low real-time performance. This paper proposes a new distributed real-time motion planning method for a multi-robot system using Model Predictive Contouring Control (MPCC). MPCC allows separating the tracking accuracy and productivity, to improve productivity better than the traditional Model Predictive Control (MPC) which follows a time-dependent reference. In the proposed distributed MPCC, each robot exchanges the predicted paths of the other robots and generates the collision-free motion in a parallel manner. The proposed distributed MPCC method is tested in industrial operation scenarios in the robot simulation platform Gazebo. The simulation results show that the proposed distributed MPCC method realizes real-time multi-robot motion planning and performs better than three commonly-used planning methods (dynamic window approach, MPC, and prioritized planning).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时多机器人运动规划的分布式模型预测轮廓控制
现有的多机器人系统运动规划算法必须改进,以解决协调性差和增加低实时性的问题。提出了一种基于模型预测轮廓控制(MPCC)的多机器人分布式实时运动规划方法。MPCC允许分离跟踪精度和生产率,比传统的模型预测控制(MPC)更好地提高生产率,后者遵循时间相关的参考。在所提出的分布式MPCC中,每个机器人以并行的方式交换其他机器人的预测路径并产生无碰撞运动。在机器人仿真平台Gazebo上对所提出的分布式MPCC方法进行了工业操作场景的测试。仿真结果表明,所提出的分布式MPCC方法实现了多机器人的实时运动规划,并优于常用的三种规划方法(动态窗口法、MPC法和优先规划法)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
期刊最新文献
Contents Front Cover Image Encryption Algorithm Based on a Hybrid Model of Novel Memristive Hyperchaotic Systems, DNA Coding, and Hash Functions Improved Dynamic Q-Learning Algorithm to Solve the Lot-Streaming Flowshop Scheduling Problem with Equal-Size Sublots A Multi-Objective Hybrid Algorithm for the Casting Scheduling Problem with Unrelated Batch Processing Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1