Nanocomposite-coated porous templates for engineered bone scaffolds: a parametric study of layer-by-layer assembly conditions

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical materials Pub Date : 2019-09-20 DOI:10.1088/1748-605X/ab3b7b
M. Ziminska, M. Chalanqui, P. Chambers, J. Acheson, H. McCarthy, N. Dunne, A. Hamilton
{"title":"Nanocomposite-coated porous templates for engineered bone scaffolds: a parametric study of layer-by-layer assembly conditions","authors":"M. Ziminska, M. Chalanqui, P. Chambers, J. Acheson, H. McCarthy, N. Dunne, A. Hamilton","doi":"10.1088/1748-605X/ab3b7b","DOIUrl":null,"url":null,"abstract":"Using the layer-by-layer (LbL) assembly technique to deposit mechanically reinforcing coatings onto porous templates is a route for fabricating engineered bone scaffold materials with a combination of high porosity, strength, and stiffness. LbL assembly involves the sequential deposition of nano- to micro-scale multilayer coatings from aqueous solutions. Here, a design of experiments (DOE) approach was used to evaluate LbL assembly of polyethyleneimine (PEI), polyacrylic acid (PAA), and nanoclay coatings onto open-cell polyurethane foam templates. The thickness of the coatings, and the porosity, elastic modulus and collapse stress of coated foam templates were most strongly affected by the pH of PAA solutions, salt concentration, and interactions between these factors. The mechanical properties of coated foams correlated with the thickness of the coatings, but were also ascribed to changes in the coating properties due to the different assembly conditions. A DOE optimization aimed to balance the trade-off between higher mechanical properties but lower porosity of foam templates with increasing coating thickness. Micromechanical modeling predicted that deposition of 116 QLs would achieve mechanical properties of cancellous bone (>0.05 GPa stiffness and >2 MPa strength) at a suitable porosity of >70%. When capped with a final layer of PAA and cross-linked via thermal treatment, the PEI/PAA/PEI/nanoclay coatings exhibited good indirect cytotoxicity with mesenchymal stem cells. The ability of LbL assembly to deposit a wide range of functional constituents within multilayer-structured coatings makes the general strategy of templated LbL assembly a powerful route for fabricating engineered tissue scaffolds that can be applied onto various porous template materials to achieve a wide range of properties, pore structures, and multifunctionality.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab3b7b","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab3b7b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 6

Abstract

Using the layer-by-layer (LbL) assembly technique to deposit mechanically reinforcing coatings onto porous templates is a route for fabricating engineered bone scaffold materials with a combination of high porosity, strength, and stiffness. LbL assembly involves the sequential deposition of nano- to micro-scale multilayer coatings from aqueous solutions. Here, a design of experiments (DOE) approach was used to evaluate LbL assembly of polyethyleneimine (PEI), polyacrylic acid (PAA), and nanoclay coatings onto open-cell polyurethane foam templates. The thickness of the coatings, and the porosity, elastic modulus and collapse stress of coated foam templates were most strongly affected by the pH of PAA solutions, salt concentration, and interactions between these factors. The mechanical properties of coated foams correlated with the thickness of the coatings, but were also ascribed to changes in the coating properties due to the different assembly conditions. A DOE optimization aimed to balance the trade-off between higher mechanical properties but lower porosity of foam templates with increasing coating thickness. Micromechanical modeling predicted that deposition of 116 QLs would achieve mechanical properties of cancellous bone (>0.05 GPa stiffness and >2 MPa strength) at a suitable porosity of >70%. When capped with a final layer of PAA and cross-linked via thermal treatment, the PEI/PAA/PEI/nanoclay coatings exhibited good indirect cytotoxicity with mesenchymal stem cells. The ability of LbL assembly to deposit a wide range of functional constituents within multilayer-structured coatings makes the general strategy of templated LbL assembly a powerful route for fabricating engineered tissue scaffolds that can be applied onto various porous template materials to achieve a wide range of properties, pore structures, and multifunctionality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于工程骨支架的纳米复合涂层多孔模板:逐层组装条件的参数化研究
使用逐层(LbL)组装技术在多孔模板上沉积机械增强涂层是制造具有高孔隙率、强度和刚度组合的工程骨支架材料的途径。LbL组装涉及从水溶液中顺序沉积纳米到微米级多层涂层。在这里,使用实验设计(DOE)方法来评估聚乙烯亚胺(PEI)、聚丙烯酸(PAA)和纳米粘土涂层在开孔聚氨酯泡沫模板上的LbL组装。PAA溶液的pH、盐浓度以及这些因素之间的相互作用对涂层的厚度以及涂层泡沫模板的孔隙率、弹性模量和坍塌应力的影响最大。涂层泡沫的机械性能与涂层厚度相关,但也归因于不同组装条件导致的涂层性能变化。DOE优化旨在平衡泡沫模板的较高机械性能和较低孔隙率与增加涂层厚度之间的权衡。微观力学建模预测,116 QLs的沉积将在>70%的合适孔隙率下实现松质骨的机械性能(>0.05 GPa刚度和>2 MPa强度)。当用PAA的最后一层覆盖并通过热处理交联时,PEI/PAA/PEI/纳米粘土涂层表现出与间充质干细胞良好的间接细胞毒性。LbL组件在多层结构涂层中沉积广泛功能成分的能力使模板化LbL组装的一般策略成为制造工程组织支架的有力途径,该支架可应用于各种多孔模板材料上,以实现广泛的性能、孔结构和多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
期刊最新文献
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1